新疆北大附中新疆分校2025届数学九上开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知菱形ABCD的周长是24米,∠BAC=30°,则对角线BD的长等于()
A.6米B.3米C.6米D.3米
2、(4分)漳州市政府为了鼓励市民绿色出行,投资了一批城市公共自行车,收费如下:第1小时内免费,1小时以上,每半小时收费0.5元(不到半小时按半小时计).马小跳刷卡时显示收费1.5元,则马小跳租车时间x的取值范围为( )
A.1<x≤1.5B.2<x≤2.5C.2.5<x≤3D.3<x≤4
3、(4分)小颖现已存款200元,为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y(元)与时间x(月)之间的函数关系式是( )
A.y=10xB.y=120xC.y=200-10xD.y=200+10x
4、(4分)已知一个多边形的内角和等于它的外角和,则这个多边形的边数为
A.3 B.4 C.5 D.6
5、(4分)把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )
A.1<m<7B.3<m<4C.m>1D.m<4
6、(4分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是( )
A.k>0B.k<0C.k≤0D.k≥0
7、(4分)如图,过点作轴的垂线,交直线于,在轴上取点,使,过点作轴的垂线,交直线于,在轴上取点,使,过点作轴的垂线,交直线于,···,这样依次作图,则点的纵坐标为( )
A.B.C.D.
8、(4分)函数的图象经过点,的值是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.
10、(4分)若直线与直线平行,且与两坐标轴围成的面积为1,则这条直线的解析式是________________.
11、(4分)一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a= .
12、(4分)在反比例函数图象的毎一支曲线上,y都随x的增大而减小,则k的取值范围是__________.
13、(4分)若分式 的值为零,则 _____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了解某校八年级学生每周平均课外阅读时间的情况,随机抽查了该校八年级部分学生,对其每周平均课外阅读时间进行统计,根据统计数据绘制成如图的两幅尚不完整的统计图:
(1)本次共抽取了多少人?并请将图1的条形图补充完整;
(2)这组数据的众数是________;求出这组数据的平均数;
(3)若全校有1500人,请你估计每周平均课外阅读时间为3小时的学生多少人?
15、(8分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.
(1)求点E的坐标;
(2)求△ACE的面积.
16、(8分)如图,已知点,分别是平行四边形的边,上的中点,且∠=90°.
(1)求证:四边形是菱形;
(2)若=4,=5,求菱形的面积.
17、(10分)如图,四边形中,,平分,点是延长线上一点,且.
(1)证明:;
(2)若与相交于点,,求的长.
18、(10分)作平行四边形ABCD的高CE,B是AE的中点,如图.
(1)小琴说:如果连接DB,则DB⊥AE,对吗?说明理由.
(2)如果BE:CE=1: ,BC=3cm,求AB.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算或化简
(1) (2)
20、(4分)正五边形的内角和等于______度.
21、(4分)等腰三角形中,两腰上的高所在的直线所形成的锐角为35°,则等腰三角形的底角为___________
22、(4分)关于的方程无解,则的值为________.
23、(4分)直线y=2x+1经过点(a,0),则a=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,E是BC延长线上的一点,且DE=AB,连接AE、BD,证明AE=BD.
25、(10分)如图,已知直线l和l外一点P,用尺规作l的垂线,使它经过点P.(保留作图痕迹,不写作法)
26、(12分)某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.下表是购买量x(千克)、付款金额y(元)部分对应的值,请你结合表格:
(1)写出a、b的值,a= b= ;
(2)求出当x>2时,y关于x的函数关系式;
(3)甲农户将18.8元钱全部用于购买该玉米种子,计算他的购买量.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由菱形ABCD的周长是24米,∠BAC=30°,易求得AB=6米,△ABD是等边三角形,继而求得答案.
【详解】
解:∵菱形ABCD的周长是24米,∠BAC=30°,
∴AB=AD=24÷4=6(米),∠DAB=2∠BAC=60°,
∴△ABD是等边三角形,
∴BD=AB=6米.
故选C.
此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.
2、B
【解析】
根据题意,可以列出相应的不等式组,从而可以求得x的取值范围.
【详解】
由题意可得,,解得,2<x≤2.5,故选B.
本题考查一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的不等式组,注意题目中每半小时收费0.5元,也就是说每小时收费1元.
3、D
【解析】
根据题意可以写出存款总金额y(元)与时间x(月)之间的函数关系式,从而可以解答本题.
【详解】
解:由题意可得,
y=200+10x,
故选:D.
本题考查函数关系式,解答本题的关键是明确题意,写出函数关系式.
4、B
【解析】试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,
∴这个多边形是四边形.
故选B.
考点:多边形内角与外角.
视频
5、C
【解析】
直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.
【详解】
解:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,
联立两直线解析式得:,解得:,
即交点坐标为,
∵交点在第一象限,
∴,
解得:m>1.
故选:C.
本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横坐标大于2、纵坐标大于2.
6、A
【解析】
根据一次函数的性质求解.
【详解】
一次函数的图象经过第一、二、三象限,那么.故选A.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
7、B
【解析】
根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.
【详解】
解:∵A0(1,0),
∴OA0=1,
∴点B1的横坐标为1,
∵B1,B2、B3、…、B8在直线y=2x的图象上,
∴B1纵坐标为2,
∴OA1=OB1= ,
∴A1(,0),
∴B2点的纵坐标为2,
于是得到B3的纵坐标为2()2…
∴B8的纵坐标为2()7
故选:B.
本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.
8、A
【解析】
直接把点(1,m)代入正比例函数y=1x,求出m的值即可.
【详解】
解:∵正比例函数y=1x的图象经过点(1,m),
∴m=1.
故选:A.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (0,-1)
【解析】
由图象经过点M,故将M(-1,-2)代入即可得出k的值.
【详解】
解:∵一次函数y=k(x-1)的图象经过点M(-1,-2),
则有k(-1-1)=-2,解得k=1,
所以函数解析式为y=x-1,
令x=0代入得y=-1,
故其图象与y轴的交点是(0,-1).
故答案为(0,-1).
本题考查待定系数法求函数解析式,难度不大,直接代入即可.
10、y=1x±1.
【解析】
根据平行直线的解析式的k值相等可得k=1,然后求出直线与坐标轴的交点,再利用三角形的面积公式列式计算即可求得直线解析式.
【详解】
解:∵直线y=kx+b与直线y=1x-3平行,
∴k=1,即y=1x+b
分别令x=0和y=0,得与y,x轴交点分别为(0,b)和(-,0)
∴S=×|b|×|-|=1,∴b=±1
∴y=1x±1.
故答案为:y=1x±1.
本题考查两直线相交或平行问题,以及三角形面积问题,熟记平行直线的解析式的k值相等是解题的关键.
11、1.
【解析】
试题分析:由第一段函数得出进水速度是20÷4=5升/分,由第二段函数可算出出水速度是(8×5-10)÷(12-4)=20÷8=2.75升/分,利用两点坐标(4,20),(12,20)求出第二段函数解析式为y=x+1,则a点纵坐标是,由第三段图像即出水速度×出水时间=出水量,列方程得:=(24-a)×2.75,解得a=1.
考点:一次函数的实际应用.
12、
【解析】
根据反比例函数中,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k-3>0,解可得k的取值范围.
【详解】
根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
即可得k−3>0,
解得k>3.
故答案为:k>3
此题考查反比例函数的性质,解题关键在于当反比例函数的系数大于0时得到k-3>0
13、-1
【解析】
直接利用分式的值为 0,则分子为 0,分母不为 0,进而得出答案.
【详解】
解:∵分式的值为零,
∴
解得:.
故答案为:﹣1.
本题考查分式的值为零的条件,正确把握定义是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)60人,图见解析;(2)众数是3,平均数是2.75;(3)500人.
【解析】
(1)根据统计图中的数据可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;
(2)根据统计图中的数据可以求得众数和平均数;
(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.
【详解】
解:(1)由图2知阅读时间为2小时的扇形图圆形角为90°,即阅读时间为2小时的概率为,再根据图1可知阅读2小时的人数为15人,所以本次共抽取了15÷ =60名学生,阅读3小时的学生有:60-10-15-10-5=20(名),
补充完整的条形统计图如下图所示;
(2)由条形统计图可得,
这组数据的众数是3,
这组数据的平均数是:;
(3)1500× =500(人),
答:课外阅读时间为3小时的学生有500人.
本题考查条形统计图、扇形统计图、用样本估计总体、加权平均数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、(1)(1,2)(2)1
【解析】
分析:(1)联立两函数的解析式,解方程组即可;(2)先根据函数解析式求得点A、C的坐标,即可得线段AC的长,再根据三角形的面积公式计算即可.
详解:(1)∵,∴,∴E(1,2);
(2)当y1=x+1=0时,解得:x=﹣1,∴A(﹣1,0),当y2=﹣2x+4=0时,解得:x=2,
∴C(2,0),∴AC=2﹣(﹣1)=1,
==1.
点睛:本题考查了两直线相交或平行的问题,解题的关键是根据两直线解析式求出它们的交点的坐标及它们和x轴的交点的坐标.
16、(1)见解析;(2)10.
【解析】
(1)由平行四边形的性质可得BC=AD,BC∥AD,由中点的性质可得EC=AF,可证四边形AECF为平行四边形,由直角三角形的性质可得AE=EC,即可得结论;
(2)可求S△ABC=AB×AC=10,即可求菱形AECF的面积.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
∵点,分别是边,上的中点
∴AF∥EC ,AF=EC
∴四边形AECF是平行四边形.
在Rt△ABC中,∠BAC=90°,点E是BC边的中点,
∴AE =BC=CE
∴平行四边形AECF是菱形.
(2)∵∠BAC=90°,AB=5,AC=4,
∴S△ABC=AB×AC=10
∵点E是BC的中点,
∴S△AEC=S△ABC=5
∵四边形AECF是菱形
∴四边形AECF的面积=2S△AEC=10.
本题考查了菱形的判定和性质,直角三角形的性质,三角形的面积公式,熟练运用菱形的判定是本题的关键.
17、(1)详见解析;(2)
【解析】
(1)直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;
(2)首先过点C作CM⊥PD于点M,进而得出△CPM∽△APD,求出EC的长即可得出答案.
【详解】
解:(1):∵,平分,
∴,
∴,
∵,
∴,
∴,
∴;
(2) 过点作于点,
∵,∴,
∵,
∴,
∴,
设,
∵,∴,
∵,
∴,
解得:,
∴.
此题主要考查了相似三角形的判定与性质以及等腰三角形的性质等知识,正确得出△CPM∽△APD是解题关键.
18、(1)BD⊥AE,理由见解析;(2)(cm).
【解析】
(1)直接利用平行四边形的性质得出BD∥CE,进而得出答案;
(2)直接利用勾股定理得出BE的长,进而得出答案.
【详解】
解:(1)对,
理由:∵ABCD是平行四边形,
∴CD∥AB且CD=AB.
又B是AE的中点,
∴CD∥BE且CD=BE.
∴BD∥CE,
∵CE⊥AE,
∴BD⊥AE;
(2)设BE=x,则CE=x,
在Rt△BEC中:x2+(x)2=9,
解得:x=,
故AB=BE=(cm).
此题主要考查了平行四边形的性质以及勾股定理,正确应用平行四边形的性质是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(1);
【解析】
(1)根据根式的计算法则计算即可.
(2)采用平方差公式计算即可.
【详解】
(1)原式
(2)原式
本题主要考查根式的计算,这是必考题,应当熟练掌握.
20、540
【解析】
过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
∴正五边形的内角和=3180=540°
21、17.5°或72.5°
【解析】
分两种情形画出图形分别求解即可解决问题.
【详解】
解:①如图,当∠BAC是钝角时,
由题意:AB=AC,∠AEH=∠ADH=90°,∠EHD=35°,
∴∠BAC=∠EAD=360°-90°-90°-35°=145°,
∴∠ABC=;
②如图,当∠A是锐角时,
由题意:AB=AC,∠CDA=∠BEA=90°,∠CHE=35°,
∴∠DHE=145°,
∴∠A=360°-90°-90°-115°=35°,
∴∠ABC=;
故答案为:17.5°或72.5°.
本题考查等腰三角形的性质,四边形内角和定理等知识,解题的关键是用分类讨论的思想思考问题,属于中考常考题型.
22、-1.
【解析】
分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.
【详解】
解:去分母得:2x-1=x+1+m,
整理得:x=m+2,
当m+2= -1,即m= -1时,方程无解.
故答案为:-1.
本题考查分式方程的解,分式方程无解分为最简公分母为0的情况与分式方程转化为的整式方程无解的情况.
23、
【解析】
代入点的坐标,求出a的值即可.
【详解】
将(a,0)代入直线方程得:2a+1=0
解得,a=,
故答案.
本题考查了直线方程问题,考查函数代入求值,是一道常规题.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
首先根据平行四边形的性质可得AB=CD,AB∥CD,再根据等腰三角形的性质可得∠DCE=∠DEC,即可证明△ABE≌△DEB,再根据全等三角形性质可得到结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,
∵DE=AB,
∴DE=DC.
∴∠DCE=∠DEC,
∵AB∥DC,
∴∠ABC=∠DCE.
∴∠ABC=∠DEC.
在△ABE与△DEB中
,
∴△ABE≌△DEB(SAS).
∴AE=BD.
本题考查了平行四边形的性质,全等三角形的判定和性质,以及等腰三角形的性质,解题的关键是根据图中角的关系,找出证明全等的条件.
25、详见解析
【解析】
以P为圆心,以任意长为半径画弧,交直线l与于点M、N,再分别以点M、N为圆心,以大于MN长为半径画弧,两弧相交于点G、H,连接GH,直线GH即为所求.
【详解】
如图,直线GH即为所求.
本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答本题的关键.
26、(1)5,1;(2)y=4x+2;(3)甲农户的购买量为4.2千克.
【解析】
(1)由表格即可得出购买量为函数的自变量x,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;
(2)设当x>2时,y关于x的函数解析式为y=kx+b,根据点的坐标利用待定系数法即可求出函数解析式;
(3)由18.8>10,利用“购买量=钱数÷单价”即可得出甲农户的购买了,再将y=18.8代入(2)的解析式中即可求出农户的购买量.
【详解】
解:(1)由表格即可得出购买量是函数的自变量x,
∵10÷2=5,
∴a=5,b=2×5+5×0.8=1.
故答案为:5,1;
(2)设当x>2时,y关于x的函数解析式为y=kx+b,
将点(2.5,12)、(3,1)代入y=kx+b中,
得:,
解得:,
∴当x>2时,y关于x的函数解析式为y=4x+2.
(3)∵18.8>10,
4x+2=18.8
x=4.2
∴甲农户的购买量为:4.2(千克).
答:甲农户的购买量为4.2千克.
本题考查了一次函数的应用以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
购买量x(千克)
1.5
2
2.5
3
付款金额y(元)
7.5
10
12
b
2024年新疆维吾尔自治区轮台县第二中学九上数学开学达标测试试题【含答案】: 这是一份2024年新疆维吾尔自治区轮台县第二中学九上数学开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年新疆伊犁州九上数学开学预测试题【含答案】: 这是一份2024-2025学年新疆伊犁州九上数学开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
新疆北大附中新疆分校2023-2024学年数学八年级第一学期期末教学质量检测模拟试题含答案: 这是一份新疆北大附中新疆分校2023-2024学年数学八年级第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,要使分式无意义,则的取值范围是,已知x2+2等内容,欢迎下载使用。