2024年新疆乌鲁木齐市数学九上开学质量检测模拟试题【含答案】
展开这是一份2024年新疆乌鲁木齐市数学九上开学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)Rt△ABO与Rt△CBD在平面直角坐标系中的位置如图所示,∠ABO=∠CBD=90°,若点A(2,﹣2),∠CBA=60°,BO=BD,则点C的坐标是( )
A.(2,2)B.(1,)C.(,1)D.(2,2)
2、(4分)已知实数a、b,若a>b,则下列结论正确的是( )
A.a+3<b+3B.a-4<b-4C.2a>2bD.
3、(4分)在式子,,,中,x可以取1和2的是( )
A.B.C.D.
4、(4分)一个正多边形的每一个外角都等于45°,则这个多边形的边数为( )
A.4B.6C.8D.10
5、(4分)已知是方程的一个根,那么代数式的值为( )
A.5B.6C.7D.8
6、(4分)如图,在平行四边形中,分别以、为边向外作等边、,延长交于点,点在点、之间,连接,,,则以下四个结论一定正确的是( )
①;②;③④是等边三角形.
A.只有①②B.只有①④C.只有①②③D.①②③④
7、(4分)如图,矩形的对角线相交于点,,则的周长为()
A.12B.14C.16D.18
8、(4分)下列各式:中,是分式的有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲,乙两车都从A地出发,沿相同的道路,以各自的速度匀速驶向B地.甲车先出发,乙车出发一段时间后追上甲并反超,乙车到达B地后,立即按原路返回,在途中再次与甲车相遇。着两车之间的路程为s(千米),与甲车行驶的时间t(小时)之间的图象如图所示.乙车从A地出发到返回A地需________小时.
10、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.
11、(4分)如图,直线y1=-x+a与直线y2=bx-4相交于点P(1,-3),则不等式-x+a≥bx-4的解集是___________.
12、(4分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线 与此正方形的边有交点,则a的取值范围是________.
13、(4分)如图,四边形是边长为4的正方形,点E在边上,PE=1;作EF∥BC,分别交AC、AB于点G、F,M、N分别是AG、BE的中点,则MN的长是_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,点D,E分别是边BC,AC上的中点,连接DE,并延长DE至点F,使EF=ED,连接AD,AF,BF,CF,线段AD与BF相交于点O,过点D作DG⊥BF,垂足为点G.
(1)求证:四边形ABDF是平行四边形;
(2)当时,试判断四边形ADCF的形状,并说明理由;
(3)若∠CBF=2∠ABF,求证:AF=2OG.
15、(8分)如图1,矩形ABCD的四边上分别有E、F、G、H四点,顺次连接四点得到四边形EFGH.若∠1=∠2=∠3=∠4,则四边形EFGH为矩形ABCD的“反射四边形”.
(1)请在图2,图3中分别画出矩形ABCD的“反射四边形EFGH”.
(2)若AB=4,BC=8,请在图2,图3中任选其一,计算“反射四边形EFGH”的周长.
16、(8分)探究:如图,在正方形中,点,分别为边,上的动点,且.
(1)如果将绕点顺时针方向旋转.请你画出图形(旋转后的辅助线).你能够得出关于,,的一个结论是________.
(2)如果点,分别运动到,的延长线上,如图,请你能够得出关于,,的一个结论是________.
(3)变式:如图,将题目改为“在四边形中,,且,点,分别为边,上的动点,且”,请你猜想关于,,有什么关系?并验证你的猜想.
17、(10分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:画出图形,把截去的部分打上阴影
新多边形内角和比原多边形的内角和增加了.
新多边形的内角和与原多边形的内角和相等.
新多边形的内角和比原多边形的内角和减少了.
将多边形只截去一个角,截后形成的多边形的内角和为,求原多边形的边数.
18、(10分)为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):
(1)写出a,b的值;
(2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)不等式组的解集为x>2,则a的取值范围是_____________.
20、(4分)函数y=36x-10的图象经过第______象限.
21、(4分)如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
22、(4分)如图,在中,,,,为的中点,则______.
23、(4分)如图,直线 y=x+1 与 y 轴交于点 A1,以 OA1为边,在 y 轴右侧作正方形 OA1B1C1,延长 C1B1交直线 y=x+1 于点 A2,再以 C1A2为边作正方形,…,这些正方形与直线 y=x+1 的交点分别为 A1,A2,A3,…,An,则点 Bn 的坐标为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程:
25、(10分) “五一”期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.现有甲、乙两家租车公司,租车费用如下:甲公司按日收取固定租金80元,另外再按租车时间计费;乙公司无固定租金,直接按租车时间计费,每小时租费是30元.
(1)设租用时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,其图象如图所示,分别求出y1, y2关于x的函数解析式;
(2)请你帮助小丽计算,租用哪家新能源汽车自驾出游更合算?
26、(12分)已知平面直角坐标系中,点P的坐标为
(1)当m为何值时,点P到x轴的距离为1?
(2)当m为何值时,点P到y轴的距离为2?
(3)点P可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m的值;若不可能,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
过点C作CE垂直x轴于点E.先证明△ODB为等边三角形,求出OD、DB长,然后根据∠DCB=30°,求出CD的长,进而求出OC,最后求出OE,CE,即求出点C坐标.
【详解】
.解:如图,过点C作CE垂直x轴于点E.
∵A(2,﹣2),
∴OB=2,AB=2,
∵∠ABO=∠CBD=90°,
∴∠DBO=∠CBA=60°,
∵BO=BD,
∴∠D=DOB=60°,
DO=DB=BO=2,
∴∠BCD=30°,
CD=2BD=4,
∴CO=CD﹣OD=4﹣2=2,
∵∠COE=90°﹣∠COy=90°﹣60°=30°
∴CE=OC=1,OE=,
∴C(,1).
故选C.
本题考查坐标与图形性质,熟练运用30度角直角三角形性质是解题的关键.
2、C
【解析】
根据不等式的性质逐个判断即可.(1 不等式两边同时加或减去同一个整式,不等号方向不变; 2 不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;3 不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.)
【详解】
根据a>b可得
A 错误,a+3>b+3
B 错误,a-4>b-4
C 正确.
D 错误,
故选C.
本题主要考查不等式的性质,属于基本知识,应当熟练掌握.
3、C
【解析】
根据分式和二次根式成立的条件逐个式子分析即可.
【详解】
A.有意义时x≠1,不能取1,故不符合题意;
B.有意义时x≠2,不能取2,故不符合题意;
C.有意义时x≥1,以取1和2,故符合题意;
D.有意义时x≥2,不能取1,故不符合题意;
故选C.
本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于零,二次根式有意义的条件是被开方式大于且等于零.
4、C
【解析】
因为多边形的外角和为360°,所以这个多边形的边数为:360÷45=8,
故选C.
5、C
【解析】
因为a是方程x2−2x−1=0的一个根,所以a2−2a=1,那么代数式2a2−4a+5可化为2(a2−2a)+5,然后把a2−2a=1代入即可.
【详解】
解:∵a是方程x2−2x−1=0的一个根,
∴a2−2a=1,
∴2a2−4a+5
=2(a2−2a)+5
=2×1+5
=7,
故选:C.
本题考查了一元一次方程的解以及代数式求值,注意解题中的整体代入思想.
6、B
【解析】
根据平行四边形的性质、全等三角形的性质以及判定定理对各项进行判断即可.
【详解】
为平行四边形,
,
,
,
①对.
②
,
,
,
,
②不对
③无特殊角度条件,无法证③
同理,
④,
,,
,
,
,
,
等边,④对,
选①④
故选B.
本题考查了三角形的综合问题,掌握平行四边形的性质、全等三角形的性质以及判定定理是解题的关键.
7、A
【解析】
根据题意可得三角形ABO是等边三角形,利用性质即可解答.
【详解】
解:已知在矩形ABCD中,AO=BO,
又因为∠BOC=120°,故∠AOB=60°,
可得三角形AOB为等边三角形,
又因为AC=8,则AB=4,
则三角形AOB的周长为12.
答案选A.
本题考查矩形和等边三角形的性质,熟悉掌握是解题关键.
8、D
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
解:是分式,共4个
故选:D.
本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意和函数图象中的数据可以列出相应的方程组,从而可以求得甲、乙两车的速度和乙到达B地时的时间,再根据函数图象即可求得乙车从A地出发到返回A地需的时间.
【详解】
解:如图,
设甲车的速度为a千米/小时,乙的速度为b千米/小时,甲乙第一相遇之后在c小时,相距200千米,则
,
解得:,
∴乙车从A地出发到返回A地需要:(小时);
故答案为:
本题考查函数图象,解三元一次方程组,解答本题的明确题意,利用数形结合的思想解答.
10、二
【解析】
根据各象限内点的坐标特征,可得答案.
【详解】
解:由点A(x,y)在第三象限,得
x<0,y<0,
∴x<0,-y>0,
点B(x,-y)在第二象限,
故答案为:二.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
11、x≤1.
【解析】
观察函数图象得到当x<1时,函数y=-x+a的图象都在y=bx-4的图象上方,所以不等式-x+a≥bx-4的解集为x≤1.
【详解】
如图,
当x<1时,函数y=-x+a的图象都在y=bx-4的图象上方,所以不等式-x+a≥bx-4的解集为x≤1;
故答案为x≤1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、-1≤a≤
【解析】
根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.
【详解】
解:反比例函数经过点A和点C.
当反比例函数经过点A时,即=3,
解得:a=±(负根舍去);
当反比例函数经过点C时,即=3,
解得:a=1±(负根舍去),
则-1≤a≤.
故答案为: -1≤a≤.
本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
13、2.5
【解析】
先判断四边形的形状,再连接,利用正方形的性质得出是等腰直角三角形,再利用直角三角形的性质得出即可.
【详解】
∵四边形 是边长为4的正方形, ,
∴四边形是矩形,
∵,
∴,
连接,如图所示:
∵四边形是正方形,
∴ ,是等腰直角三角形,
∵是的中点,即有 ,
∴,是直角三角形,
又∵是中点,,
∵
∴,
故答案为: .
本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)四边形ADCF是矩形,理由见解析;(3)证明见解析.
【解析】
(1)欲证明四边形ABDF是平行四边形,只要证明AF∥BD,AF=BD即可.
(2)结论:四边形ADCF是矩形,只要证明∠DAF=90°即可.
(3)作AM⊥DG 于M,连接BM,先证明AM=2OG,再证明AM=AF即可解决问题.
【详解】
(1)证明:∵点D,E分别是边BC,AC上的中点,
∴ED∥AB,AE=CE,
∵EF=ED,
∴四边形ADCF是平行四边形,
∴AF∥BC,
∴四边形ABDF是平行四边形;
(2)四边形ADCF是矩形.
理由:∵AE=DF,EF=ED,
∴AE=EF=DE,
∴∠EAF=∠AFE,∠DAE=∠ADE,
∴∠DAF=∠EAF+∠EAD=×180°=90°,
由(1)知:四边形ADCF是平行四边形;
∴四边形ADCF是矩形;
(3)证明:作AM⊥DG 于M,连接BM.
∵四边形ABDF是平行四边形,
∴OA=OD,∵OG∥AM,
∴GM=GD,
∴AM=2OG,
∵BG⊥DM,GM=GD,
∴BM=BD,
∴∠CBF=∠MBG,
∵∠CBF=2∠ABF,
∴∠ABM=∠ABF,
∵AM∥BF,
∴∠MAB=∠ABF,
∴∠MAB=∠MBA,
∴AM=BM=BD=AF=2OG,
∴AF=2OG.
本题考查四边形综合题、平行四边形的判定和性质、矩形的判定和性质、三角形中位线定理等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线.
15、(1)见解析;(2)8
【解析】
(1)根据反射四边形的定义即可得;
(2)利用勾股定理分别求得各边的长度,由周长公式求解可得.
【详解】
解:(1)如图所示,四边形EFGH即为所求;
(2)在图②中,EF=FG=GH=HE=,
∴反射四边形EFGH的周长为8;
在图③中,EF=GH=,
∴反射四边形EFGH的周长为.
本题主要考查作图-应用与设计作图,熟练掌握勾股定理是解题的关键.
16、(1)EF=BE+DF,画图如图所示;(2)BE= DF+EF;(3)EF=BE+DF,理由见解析
【解析】
(1)画出图形,证明△AEF≌△AEF′,得到EF=EF′,根据EF′=BE+BF′=BE+DF得到结果;
(2)将△ADF绕点A顺时针旋转90°,证明△AEF≌△AEF′,得到EF=EF′,从而可说明BE= DF+EF;
(3)将△ADF绕点A顺时针旋转,使AD与AB重合,证明∠ABF′+∠ABE=180°,说明F′、B、E三点共线,再证明△AEF≌△AEF′,得出EF=EF′,从而可说明EF=BE+DF.
【详解】
解:(1)画图如图所示,旋转后点F的对应点为F′,AD与AB重合,
∵∠EAF=45°,
∴∠EAF′=∠EAF=45°,
在△AEF和△AEF′中,
,
∴△AEF≌△AEF′(SAS),
∴EF=EF′,
又∵EF′=BE+BF′=BE+DF,
∴EF=BE+DF,
故答案为:EF=BE+DF;
(2)将△ADF绕点A顺时针旋转90°,旋转后点F的对应点为F′,AD与AB重合,
∵∠EAF=45°,
∴∠F′AE=45°,AF=AF′,
在△AEF和△AEF′中,
,
∴△AEF≌△AEF′(SAS),
∴EF=EF′,
而DF=BF′,
∴BE=BF′+EF′=DF+EF,
故答案为:BE= DF+EF;
(3)EF=BE+DF,
理由是:如图,将△ADF绕点A顺时针旋转,使AD与AB重合,
则△ADF≌△ABF′,
∴∠BAF′=∠DAF,AF=AF′,BF′=DF,∠ABF′=∠D,
又∵∠EAF=∠BAD,
∴∠EAF=∠DAF+∠BAE=∠BAE+∠BAF′,
∴∠EAF=∠EAF′,
又∵∠ABC+∠ADC=180°,
∴∠ABF′+∠ABE=180°,
∴F′、B、E三点共线,
在△AEF和△AEF′中,
,
∴△AEF≌△AEF′(SAS),
∴EF=EF′,
又∵EF′=BE+BF′=BE+DF,
∴EF=BE+DF.
本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.
17、(1)作图见解析;(2)15,16或1.
【解析】
(1)①过相邻两边上的点作出直线即可求解;
②过一个顶点和相邻边上的点作出直线即可求解;
③过相邻两边非公共顶点作出直线即可求解;
(2)根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.
【详解】
如图所示:
设新多边形的边数为n,
则,
解得,
若截去一个角后边数增加1,则原多边形边数为15,
若截去一个角后边数不变,则原多边形边数为16,
若截去一个角后边数减少1,则原多边形边数为1,
故原多边形的边数可以为15,16或1.
本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.
18、(1)a=84.5,b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.
【解析】
(1)依据中位数和众数的定义进行计算即可;
(2)依据平均数、中位数、方差以及众数的角度分析,即可得到哪个学生的水平较高.
【详解】
(1)甲组数据排序后,最中间的两个数据为:84和85,故中位数a(84+85)=84.5,乙组数据中出现次数最多的数据为81,故众数b=81;
(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;
或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论).
本题考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、a≤2
【解析】
根据求一元一次不等式组解集的口诀,即可得到关于a的不等式,解出即可.
【详解】
由题意得a≤2.
本题考查的是解一元一次不等式组,解答本题的关键是熟练掌握求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,小小大大找不到(无解).
20、【解析】
根据y=kx+b(k≠0,且k,b为常数),当k>0,b<0时,函数图象过一、三、四象限.
【详解】
解:因为函数中,
,,
所以函数图象过一、三、四象限,
故答案为:一、三、四.
此题主要考查了一次函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.
21、50°
【解析】
由平行线的性质可求得∠C/CA的度数,然后由旋转的性质得到AC=AC/,然后依据三角形的性质可知∠AC/C的度数,依据三角形的内角和定理可求得∠CAC/的度数,从而得到∠BAB/的度数.
解:∵CC/∥AB,
∴∠C/CA=∠CAB=65°,
∵由旋转的性质可知:AC=AC/,
∴∠ACC/=∠AC/C=65°.
∴∠CAC/=180°-65°-65°=50°.
∴∠BAB/=50°.
22、
【解析】
根据勾股定理以及直角三角形斜边上的中线性质即可求出答案.
【详解】
∵∠ABC=90°,BC=4cm,AB=3cm,
∴由勾股定理可知:AC=5cm,
∵点D为AC的中点,
∴BD=AC=cm,
故答案为:
本题考查勾股定理,解题的关键是熟练运用勾股定理以及直角三角形斜边上的中线的性质,本题属于基础题型.
23、 (2n-1,2(n-1)).
【解析】
首先求出B1,B2,B3的坐标,根据坐标找出规律即可解题.
【详解】
解:由直线y=x+1,知A1(0,1),即OA1=A1B1=1,
∴B1的坐标为(1,1)或[21-1,2(1-1)];
那么A2的坐标为:(1,2),即A2C1=2,
∴B2的坐标为:(1+2,2),即(3,2)或[22-1,2(2-1)];
那么A3的坐标为:(3,4),即A3C2=4,
∴B3的坐标为:(1+2+4,4),即(7,4)或[23-1,2(3-1)];
依此类推,点Bn的坐标应该为(2n-1,2(n-1)).
本题属于规律探究题,中等难度.求出点B坐标,找出规律是解题关键.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
本题可用代入消元法进行求解,即把方程2写成x=-1-y,代入方程1,得到一个关于y的一元二次方程,求出y值,进而求x.
【详解】
解:
由(2)得:(3)
把(3)代入(1):
∴
∴
原方程组的解是
本题中考查了由一个二元一次方程和一个二元二次方程组成的方程组的解法,可用代入法求解.
25、(1)y1=15x+80(x≥0),y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
【解析】
(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;
(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.
【详解】
(1)由题意设y1=k1x+80,把点(1,95)代入得95=k1+80
解得k1=15,
∴y1=15x+80(x≥0),
设y2=k2x,把(1,30)代入,可得30=k2
即k2=30,
∴y2=30x(x≥0);
(2)当y1=y2时,15x+80=30x,解得x=;
当y1>y2时,15x+80>30x解得x<;
当y1<y2时,15x+80>30x解得x>;
答:当租车时间为小时,选择甲乙公司一样;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
本题为函数实际应用问题,综合考察了待定系数法、一元一次方程和不等式和通过临界点比较函数值大小.
26、 (1), ;(2),;(3)不可能,理由见解析.
【解析】
(1)根据点到轴的距离为,可求的值;
(2)根据点到轴的距离为,可求的值;
(3)根据角平分线上的点到角两边距离相等,可求的值,且点在第一象限,可求的范围,即可判断可能性.
【详解】
解:点P到x轴的距离为1,,
点P到y轴的距离为2,,
如果点P可能在第一象限坐标轴夹角的平分线上点P在第一象限
,,不合题意
点P不可能在第一象限坐标轴夹角的平分线上.
本题考查了点到坐标,关键是利用点的坐标的性质解决问题.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年河西成功学校数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年新疆乌鲁木齐市第四中学数学九上开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年新疆维吾尔自治区乌鲁木齐市数学九上开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。