铜陵市2024-2025学年九上数学开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列计算正确的是( )
A.+=B.2+=C.2×=D.2﹣=
2、(4分)下列命题中,不正确的是( ).
A.平行四边形的对角线互相平分B.矩形的对角线互相垂直且平分
C.菱形的对角线互相垂直且平分D.正方形的对角线相等且互相垂直平分
3、(4分)下面的图形中,既是中心对称又是轴对称的图形是( )
A.B.C.D.
4、(4分)下列直线与一次函数的图像平行的直线是( )
A.;B.;C.;D..
5、(4分)已知直角三角形中30°角所对的直角边长是cm,则另一条直角边的长是( )
A.4cmB. cmC.6cmD. cm
6、(4分)估算的运算结果应在( )
A.3到4之间B.4到5之间C.5到6之间D.6到7之间
7、(4分)已知点和点在反比例函数的图象上,若,则( )
A.B.
C.D.
8、(4分)下列调查:①了解夏季冷饮市场上冰淇淋的质量;②了解嘉淇同学20道英语选择題的通过率;③了解一批导弹的杀伤范围;④了解全国中学生睡眠情况.不适合普查而适合做抽样调查的是( )
A.①②④B.①③④C.②③④D.①②③
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分) “折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.
10、(4分)二次三项式是完全平方式,则的值是__________.
11、(4分)已知△ABC中,AB=12,AC=13,BC=15,点D、E、F分别是AB、AC、BC的中点,则△DEF的周长是_____.
12、(4分)如图,在平面直角坐标系xOy中,四边形0ABC是平行四边形,且A(4,0),B(6,2),则直线AC的解析式为___________.
13、(4分)如图,为正三角形,是的角平分线,也是正三角形,下列结论:①:②:③,其中正确的有________(填序号).
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是( )
①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.
A.1个B.2个C.3个D.4个
15、(8分)如图是一个三级台阶,它的第一级的长、宽、高分别为20dm,3dm,2dm,点和点是这个台阶两个相对的端点,点处有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点的最短路程是多少?
16、(8分)已知,直线y=2x-2与x轴交于点A,与y轴交于点B.
(1)如图①,点A的坐标为_______,点B的坐标为_______;
(2)如图②,点C是直线AB上不同于点B的点,且CA=AB.
①求点C的坐标;
②过动点P(m,0)且垂直与x轴的直线与直线AB交于点E,若点E不在线段BC上,则m的取值范围是_______;
(3)若∠ABN=45º,求直线BN的解析式.
17、(10分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.
求证:DF∥AC.
18、(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.
(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,,分别以两直角边,为边向外作正方形和正方形,为的中点,连接,,若,则图中阴影部分的面积为________.
20、(4分)如图,在平行四边形中,于点,若,则的度数为________.
21、(4分)如图,在单位为1的方格纸上,……,都是斜边在轴上,斜边长分别为2,4,6……的等腰直角三角形,若的顶点坐标分别为,则依图中所示规律,的坐标为__________.
22、(4分)如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形,其中,正确的有__________.(填序号)
23、(4分)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是______(填写所有正确结论的序号).
二、解答题(本大题共3个小题,共30分)
24、(8分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.
(1)求y1关于x的函数解析式,并画出这个函数的图象;
(2)若反比例函数y2的图象与函数y1的图象相交于点A,且点A的纵坐标为2.
①求k的值;
②结合图象,当y1>y2时,写出x的取值范围.
25、(10分)已知,两地相距km,甲、乙两人沿同一公路从地出发到地,甲骑摩托车,乙骑电动车,图中直线,分别表示甲、乙离开地的路程 (km)与时问 (h)的函数关系的图象.根据图象解答下列问题.
(1)甲比乙晚出发几个小时?乙的速度是多少?
(2)乙到达终点地用了多长时间?
(3)在乙出发后几小时,两人相遇?
26、(12分)已知:一个正比例函数与一个一次函数的图象交于点A(1,4)且一次函数的图象与x轴交于点B(3,0),坐标原点为O.
(1)求正比例函数与一次函数的解析式;
(2)若一次函数交与y轴于点C,求△ACO的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据无理数的加法、减法、乘法法则分别计算即可.
【详解】
解:∵ 不能合并,故选项A错误,
∵2+不能合并,故选项B错误,
∵2×=2,故选项C错误,
∵ ,故选项D正确,
故选D.
无理数的运算是本题的考点,熟练掌握其运算法则是解题的关键.
2、B
【解析】
A. ∵平行四边形的对角线互相平分,故正确;
B. ∵矩形的对角线互相平分且相等,故不正确;
C. ∵菱形的对角线互相垂直且平分 ,故正确;
D. ∵正方形的对角线相等且互相垂直平分,故正确;
故选B.
3、D
【解析】
根据轴对称图形与中心对称图形的概念进行判断即可.
【详解】
A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故错误;
C、不是轴对称图形,是中心对称图形.故错误;
D、既是轴对称图形,也是中心对称图形.故正确.
故选D.
本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、B
【解析】
【分析】设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.据此可以判断.
【详解】A.直线 与直线相交,故不能选;
B.直线 与直线平行,故能选;
C.直线 与直线重合,故不能选;
D.直线 与直线相交,故不能选.
故选:B
【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数性质.
5、C
【解析】
如图,
∵∠C=90°,∠B=30°,AC=2cm,
∴AB=2AC=4cm,
由勾股定理得:BC==6cm,
故选C.
6、C
【解析】
先估算出的大小,然后求得的大小即可.
【详解】
解:9<15<16,
3<<4,5<<6,
故选C.
本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.
7、D
【解析】
根据反比例函数的图像与性质逐项分析即可.
【详解】
∵k<0,
∴反比例函数的图像在二、四象限.
A.当点在第二象限,点在第四象限,且时,x1+x2>0,y1+y2>0,此时,故A错误;
B. 当点和点在第四象限时,x1+x2>0,y1+y2<0,此时,故B错误;
C. 当点和点在第四象限时,x1·x2>0,x1-x2<0,y1-y2<0,此时,故C错误;
D. ∵A、B、C均错误,
∴D正确.
故选D.
本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.
8、B
【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:①④中个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查;
③了解一批导弹的杀伤范围具有破坏性不宜普查;
②个体数量少,可采用普查方式进行调查.
故选B.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4.1.
【解析】
根据题意结合勾股定理得出折断处离地面的长度即可.
【详解】
解:
设折断处离地面的高度OA是x尺,根据题意可得:
x1+41=(10﹣x)1,
解得:x=4.1,
答:折断处离地面的高度OA是4.1尺.
故答案为:4.1.
本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.
10、17或-7
【解析】
利用完全平方公式的结构特征判断即可确定出k的值.
【详解】
解:∵二次三项式4x2-(k-5)x+9是完全平方式,
∴k-5=±12,
解得:k=17或k=-7,
故答案为:17或-7
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
11、20
【解析】
首先根据△ABC中,点D、E、F分别是AB、AC、BC的中点,判断出四边形DBFE和四边形DFCE为平行四边形,又根据平行四边形的性质,求出DE、EF、DF的值,进而得出△DEF的周长.
【详解】
解:∵△ABC中,点D、E、F分别是AB、AC、BC的中点,
∴DE∥BC,DF∥AC,EF∥AB
∴四边形DBFE和四边形DFCE为平行四边形,
又∵AB=12,AC=13,BC=15,
∴DB=EF=AB=6
DF=CE=AC=6.5
DE=FC=BC=7.5
∴△DEF的周长是DE+EF+DF=7.5+6+6.5=20.
此题主要考查平行四边形的判定,即可得解.
12、y=-x+1
【解析】
根据平行四边形的性质得到OA∥BC,OA=BC,由已知条件得到C(2,2),设直线AC的解析式为y=kx+b,列方程组即可得到结论.
【详解】
解:∵四边形OABC是平行四边形,
∴OA∥BC,OA=BC,
∵A(1,0),B(6,2),
∴C(2,2),
设直线AC的解析式为y=kx+b,
∴,
解得:,
∴直线AC的解析式为y=-x+1,
故答案为:y=-x+1.
本题考查了平行四边形的性质、坐标与图形性质以及利用待定系数法求一次函数的解析式,解题的关键是求出其中心对称点的坐标.
13、①②③
【解析】
由等边三角形的性质可得AE=AD,∠CAD=∠BAD=30°,AD⊥BC,可得∠BAE=∠BAD=30°,且AE=AD,可得EF=DF,“SAS”可证△ABE≌△ABD,可得BE=BD,即可求解.
【详解】
解:∵△ABC和△ADE是等边三角形,AD为∠BAC的角平分线,
∴AE=AD,∠CAD=∠BAD=30°,AD⊥BC,
∴∠BAE=∠BAD=30°,且AE=AD,
∴EF=DF
∵AE=AD,∠BAE=∠BAD,AB=AB
∴△ABE≌△ABD(SAS),
∴BE=BD
∴正确的有①②③
故答案为:①②③
本题考查了全等三角形的证明和全等三角形对应边相等的性质,考查了等边三角形各边长、各内角为60°的性质,本题中求证△ABE≌△ABD是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、B
【解析】
由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;
先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;
由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;
证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,
∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,
∵CD=DE,
∴AB=DE,
在△ABG和△DEG中,
,
∴△ABG≌△DEG(AAS),
∴AG=DG,
∴OG是△ACD的中位线,
∴OG=CD=AB,①正确;
∵AB∥CE,AB=DE,
∴四边形ABDE是平行四边形,
∵∠BCD=∠BAD=60°,
∴△ABD、△BCD是等边三角形,
∴AB=BD=AD,∠ODC=60°,
∴OD=AG,四边形ABDE是菱形,④正确;
∴AD⊥BE,
由菱形的性质得:△ABG≌△BDG≌△DEG,
在△ABG和△DCO中,
,
∴△ABG≌△DCO(SAS),
∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正确;
∵OB=OD,AG=DG,
∴OG是△ABD的中位线,
∴OG∥AB,OG=AB,
∴△GOD∽△ABD,△ABF∽△OGF,
∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,
∴△AFG的面积=△OGF的面积的2倍,
又∵△GOD的面积=△AOG的面积=△BOG的面积,
∴S四边形ODGF=S△ABF;③不正确;
正确的是①④.
故选B.
本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.
15、最短路程是25dm.
【解析】
先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.
【详解】
三级台阶平面展开图为长方形,长为20dm,宽为,
则蚂蚁沿台阶面爬行到点最短路程是此长方形的对角线长.
可设蚂蚁台阶面爬行到点最短路程为.
由勾股定理,得,
解得.
因此,蚂蚁沿着台阶面爬到点的最短路程是25dm.
此题考查平面展开-最短路径问题,解题关键在于利用勾股定理进行计算.
16、(1)(1,0),(0,-2);(2)C(2,2);m<0或m>2;(3) 或y=-3x-2.
【解析】
(1)利用函数解析式和坐标轴上点的坐标特征即可解决问题;
(2)①如图②,过点C 作CD⊥x 轴,垂足是D.构造全等三角形,利用全等三角形的性质求得点C的坐标;
②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2;
(3)如图③中,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.利用全等三角形的性质求出点N坐标,当直线BN′⊥直线BN时,直线BN′也满足条件,求出直线BN′的解析式即可.
【详解】
解:(1)如图①,
令y=0,则2x-2=0,即x=1.所以A(1,0).
令x=0,则y=-2,即B(0,-2).
故答案是:(1,0);(0,-2);
(2)①如图②,
过点C 作CD⊥x 轴,垂足是D,
∵∠BOA=∠ADC=90°,
∠BAO=∠CAD,
CA=AB,
∴△BOA≌△CAD(AAS),
∴CD=OB=2,AD=OA=1,
∴C(2,2);
②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2.
故答案是:m<0或m>2;
(3)如图③,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.
∵∠AOB=∠BAN=∠AHN=90°,
∴∠OAB+∠ABO=90°,∠OAB+∠HAN=90°,
∴∠ABO=∠HAN,
∵AB=AN,
∴△ABO≌△NAH(AAS),
∴AH=OB=2,NH=OA=1,
∴N(3,-1),
设直线BN的解析式为y=kx+b,
则有:,
解得,
∴直线BN的解析式为y=x-2,
当直线BN′⊥直线BN时,直线BN′也满足条件,直线BN′的解析式为:
.
∴满足条件的直线BN的解析式为y=x-2或y=-3x-2.
本题考查一次函数的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
17、见解析;
【解析】
连接BD交AC于点O,根据平行四边形的性质证明即可.
【详解】
连接BD交AC于点O.
∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.
本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.
18、(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时, A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时, A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.
【解析】
【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;
(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;
(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.
【详解】(1)设A城有化肥a吨,B城有化肥b吨,
根据题意,得,
解得,
答:A城和B城分别有200吨和300吨肥料;
(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,
从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,
设总运费为y元,根据题意,
则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,
∵,∴0≤x≤200,
由于函数是一次函数,k=4>0,
所以当x=0时,运费最少,最少运费是10040元;
(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,
所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,
当4﹣a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;
当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;
当4﹣a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.
【点睛】本题考查了二元一次方程组的应用、不等式组的应用、一次函数的应用等,弄清题意、根据题意找准等量关系、不等关系列出方程组,列出一次函数解析式是关键.注意(3)小题需分类讨论.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、25
【解析】
首先连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,然后根据直角三角形斜边中线定理,即可得出,,又由正方形的性质,得出AC=CD,BC=CF,阴影部分面积即为△CDO和△CFO之和,经过等量转换,即可得解.
【详解】
连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,如图所示
∵,,点O为AB的中点,
∴,
又∵正方形和正方形,
∴AC=CD,BC=CF
∴
此题主要考查勾股定理、直角三角形中位线定理以及正方形的性质,熟练掌握,即可解题.
20、26°
【解析】
根据可得△DBC为等腰三角形,则有∠DBC=∠C=64°,再根据平行四边形的对边互相平行,可得∠ADB=∠DBC=64°,最后再根据内角和定理来求得∠DAE的度数.
【详解】
解:∵,∠C=64°,
∴∠DBC=∠C=64°,
又∵四边形是平行四边形,
∴AD∥BC,
∴∠ADB=∠DBC=64°,
又∵,
∴∠DAE=90°−64°=26°.
故答案为:26°.
本题主要考查了平行四边形和等腰三角形的性质,熟练掌握是解题的关键.
21、
【解析】
根据A3,A5,A7,A9等点的坐标,可以找到角标为奇数点都在x轴上,且正负半轴的点角标以4为周期,横坐标相差相同,从而得到结果.
【详解】
解:∵A3是第一与第二个等腰直角三角形的公共点,
A5(4,0)是第二与第三个等腰直角三角形的公共点,
A7(-2,0)是第三与第四个等腰直角三角形的公共点,
A9(6,0)是第四与第五个等腰直角三角形的公共点,
A11(-4,0)是第五与第六个等腰直角三角形的公共点,
2019=1009+1
∴是第1009个与第1010个等腰直角三角形的公共点,
∵A3,A7(-2,0),A11(-4,0)
2019=505×4-1
∴在x轴负半轴…,
∴的横坐标为(505-1)×(-2)=-1008
∴(-1008,0)
本题考查的是规律,熟练掌握三角形的性质是解题的关键.
22、①②③④
【解析】
①∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形;故①正确;
②若∠BAC=90°,则平行四边形AEDF是矩形;故②正确;
③若AD平分∠BAC,则DE=DF;所以平行四边形是菱形;故③正确;
④若AD⊥BC,AB=AC;根据等腰三角形三线合一的性质知:DA平分∠BAC,由③知:此时平行四边形AEDF是菱形;故④正确;所以正确的结论是①②③④.
23、②③④.
【解析】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;
②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;
③∵(240+200﹣60)÷(60+80)=(h),∴乙车出发h时,两车相遇,结论③正确;
④∵80×(4﹣3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.
综上所述,正确的结论有:②③④.
故答案为:②③④.
点睛:本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y1=|x|,图象见解析;(2)①±4;②答案见解析.
【解析】
(1)写出函数解析式,画出图象即可;
(2)①分两种情形考虑,求出点A坐标,利用待定系数法即可解决问题;②利用图象法分两种情形即可解决问题.
【详解】
(1)由题意y1=|x|,函数图象如图所示:
(2)①当点A在第一象限时,由题意A(2,2),
∴2,
∴k=4,
同法当点A在第二象限时,k=﹣4,
②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.
当k<0时,x<﹣2时,y1>y2或x>0时,y1>y2.
本题考查反比例函数图象上点的特征,正比例函数的应用等知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.
25、(1)甲比乙晚出发1个小时,乙的速度是20km/h;(2)乙到达终点B地用时4个小时;(3)在乙出发后2小时,两人相遇.
【解析】
(1)观察函数图象即可得出甲比乙晚出发1个小时,再根据“速度=路程÷时间”即可算出乙的速度;
(2)由乙的速度即可得出直线OC的解析式,令y=80,求出x值即可得出结论;
(3)根据点D、E的坐标利用待定系数法即可求出直线DE的解析式,联立直线OC、DE的解析式成方程组,解方程组即可求出交点坐标,由此即可得出结论.
【详解】
解:(1)由图可知:甲比乙晚出发个小时,
乙的速度为km/h
故:甲比乙晚出发个小时,乙的速度是km/h.
(2)由(1)知,直线的解析式为,
所以当时,,
所以乙到达终点地用时个小时.
(3)设直线的解析式为,将,,代入
得:,解得:
所以直线的解析式为,
联立直线与的解析式得:
解得:
所以直线与直线的交点坐标为,
所以在乙出发后小时,两人相遇.
故答案为:(1)甲比乙晚出发1个小时,乙的速度是20km/h;(2)乙到达终点B地用时4个小时;(3)在乙出发后2小时,两人相遇.
本题考查一次函数的应用、待定系数法求函数解析式以及解二元一次方程组,解题的关键是:(1)根据“速度=路程÷时间”求出乙的速度;(2)找出直线OC的解析式;(3)联立两直线解析式成方程组.解决该题型题目时,观察函数图象,根据函数图象给定数据解决问题是关键.
26、(1)y=﹣2x+1;(2)2.
【解析】
(1)先设正比例函数解析式为y=mx,再把(1,4)点代入可得m的值,进而得到解析式;设一次函数解析式为y=kx+b,把(1,4)(2,0)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式;
(2)利用一次函数解析式,求得OC的长,进而得出△ACO的面积.
【详解】
解:(1)设正比例函数解析式为y=mx,
∵图象经过点A(1,4),
∴4=m×1,即m=4,
∴正比例函数解析式为y=4x;
设一次函数解析式为y=kx+b,
∵图象经过(1,4)(2,0),
∴,
解得:,
∴一次函数解析式为y=﹣2x+1.
(2)在y=﹣2x+1中,令x=0,则y=1,
∴C(0,1),
∴OC=1,
∴S△AOC=×1×1=2.
此题主要考查了待定系数法求一次函数解析式以及三角形的面积,关键是用联立解析式的方法求出交点坐标.
题号
一
二
三
四
五
总分
得分
宁夏中学宁县2024-2025学年九上数学开学调研试题【含答案】: 这是一份宁夏中学宁县2024-2025学年九上数学开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
合肥市45中2024-2025学年九上数学开学调研模拟试题【含答案】: 这是一份合肥市45中2024-2025学年九上数学开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广西柳州市2024-2025学年九上数学开学调研模拟试题【含答案】: 这是一份广西柳州市2024-2025学年九上数学开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。