![天津市和平区第二十中学2025届数学九年级第一学期开学达标测试试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16294424/0-1729951804347/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![天津市和平区第二十中学2025届数学九年级第一学期开学达标测试试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16294424/0-1729951804409/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![天津市和平区第二十中学2025届数学九年级第一学期开学达标测试试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16294424/0-1729951804431/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
天津市和平区第二十中学2025届数学九年级第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知二次根式与是同类二次根式,则a的值可以是( )
A.5B.6C.7D.8
2、(4分)如图,□ABCD的对角线AC与BD相交于点O,AB⊥AC.若,,则BD的长为( )
A.B.C.D.
3、(4分)下列命题是假命题的是( )
A.若 x<y,则 x+2009<y+2009B.单项式的系数是 4
C.若|x-1|+(y-3) =0,则 x=1,y=3D.平移不改变图形的形状和大小
4、(4分)下列四个多项式中,不能因式分解的是( )
A.a2+aB.C.D.
5、(4分)小宇同学投擦10次实心球的成绩如表所示:
由上表可知小宇同学投掷10次实心球成绩的众数与中位数分别是( )
A.12m,11.9mB.12m,12.1mC.12.1m,11.9mD.12.1m,12m
6、(4分)在平而直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则关于点D的说法正确的是( )
甲:点D在第一象限
乙:点D与点A关于原点对称
丙:点D的坐标是(-2,1)
丁:点D与原点距离是.
A.甲乙B.乙丙C.甲丁D.丙丁
7、(4分)如图,四边形是平行四边形,要使它变成菱形,需要添加的条件是( )
A.AC=BDB.AD=BCC.AB=BCD.AB=CD
8、(4分)随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是( )
A.一次性购买数量不超过10本时,销售价格为20元/本
B.a=520
C.一次性购买10本以上时,超过10本的那部分书的价格打八折
D.一次性购买20本比分两次购买且每次购买10本少花80元
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为_____
10、(4分)若,是一元二次方程的两个实数根,则__________.
11、(4分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.
12、(4分)已知函数y=(k-1)x|k|是正比例函数,则k=________
13、(4分)计算__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知直线y=x+2交x轴于点A,交y轴于点B,
(1)求A,B两点的坐标;
(2)已知点C是线段AB上的一点,当S△AOC= S△AOB时,求直线OC的解析式。
15、(8分)甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
根据以上信息,请解答下面的问题;
(1)补全甲选手10次成绩频数分布图.
(2)a= ,b= ,c= .
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
16、(8分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠. 书包每个定价20元,水性笔每支定价5元. 小丽和同学需买4个书包,水性笔若干支(不少于4支). 设购买费用为元,购买水性笔支.
(1)分别写出两种优惠方法的购买费用与购买水性笔支数之间的函数关系式;
(2)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
17、(10分)如图,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分线.求作AB的垂直平分线MN交AD于点E,连接BE;并证明DE=DB.(要求:尺规作图,保留作图痕迹,不写作法)
18、(10分)如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)当∠A=50°,∠BOD=100°时,判断四边形BECD的形状,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果关于x的分式方程有增根,那么m的值为______.
20、(4分)计算:__________.
21、(4分)在函数中,自变量的取值范围是__________.
22、(4分)y=(2m﹣1)x3m﹣2+3是一次函数,则m的值是_____.
23、(4分)化简:_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,点、是对角线上两点,且.
(1)求证:四边形是平行四边形.
(2)若.,且,求的面积.
25、(10分)某商品原来单价48元,厂家对该商品进行了两次降价,每次降低的百分数相同,现单价为27元,求平均每次降价的百分数.
26、(12分)如图,已知正方形ABCD的边长为6,点E、F分别在BC、DC上,CE=DF=2,DE与AF相交于点G,点H为AE的中点,连接GH.
(1)求证:△ADF≌△DCE;
(2)求GH的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
本题考查同类二次根式的概念.
点拨:化成后的被开方数相同,这样的二次根式叫做同类二次根式.
解答:当时,与不是同类二次根式.
当时,,与是同类二次根式.
当时,,与不是同类二次根式.
当时,,与不是同类二次根式.
2、B
【解析】
根据勾股定理先求出BO的长,再根据平行四边形的性质即可求解.
【详解】
∵,
∴AO=3,
∵AB⊥AC,
∴BO==5
∴BD=2BO=10,
故选B.
此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.
3、B
【解析】
非负数的性质:几个非负数的和是0,则这几个非负数都是0;平移的性质:平移前后的两个图形全等.
【详解】
A. 根据等式的性质,故正确;
B. 单项式的系数是 ,故错误;
C. 若|x−1|+(y−3) =0,则x=1,y=3,故正确;
D. 平移不改变图形的形状和大小,故正确.
故选B.
此题考查命题与定理,解题关键在于掌握各性质定义.
4、C
【解析】
逐项分解判断,即可得到答案.
【详解】
解:A选项a2+a=a(a+1);
B选项=(m+n)(m-n);
C选项. 不能因式分解;
D选项. =(a+3)2.
故选C
本题解题的观念是理解因式分解的概念和常见的因式分解方法,即:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式).
5、D
【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.
【详解】
解:由上表可知小宇同学投掷10次实心球成绩的众数是12.1m,中位数是=12(m),
故选:D.
本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
6、D
【解析】
根据A,C的坐标特点得到B,D也关于原点对称,故可求出D的坐标,即可判断.
【详解】
∵平行四边形ABCD中,A(m,n),C(-m,-n)关于原点对称,
∴B,D也关于原点对称,∵B(2,-1)
∴D(-2,1)
故点D在第四象限,点D与原点距离是
故丙丁正确,选D.
此题主要考查平行四边形的性质,解题的关键是熟知各点的坐标特点.
7、C
【解析】
根据菱形的判定:一组邻边相等的平行四边形是菱形可得答案.
【详解】
A. 添加AC=BD可证明平行四边形ABCD是矩形,不能使它变成菱形,故此选项错误;
B. 添加AD=BC不能证明平行四边形ABCD是菱形,故此选项错误;
C. 添加AB=BC可证明平行四边形ABCD是菱形,故此选项正确;
D. 添加AB=CD不能可证明平行四边形ABCD是变成菱形,故此选项错误;
故选:C.
本题考查的是菱形,熟练掌握菱形的性质是解题的关键.
8、D
【解析】
A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
【详解】
解:A、∵200÷10=20(元/本),
∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
B、∵200+16×(30﹣10)=520(元),
∴a=520,B选项正确;
D、∵200×2﹣200﹣16×(20﹣10)=40(元),
∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
故选D.
考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、()1.
【解析】
首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.
【详解】
∵四边形ABCD为正方形,
∴AB=BC=1,∠B=90°,
∴AC2=12+12,AC=;
同理可求:AE=()2,HE=()3…,
∴第n个正方形的边长an=()n-1,
∴第2016个正方形的边长为()1,
故答案为()1.
本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到an的规律是解题的关键.
10、
【解析】
根据根与系数的关系可得出,将其代入中即可求出结论.
【详解】
解:∵x1,x2是一元二次方程x2+x-2=0的两个实数根,
∴,
∴.
故答案为:.
本题考查了根与系数的关系,牢记两根之积等于是解题的关键.
11、
【解析】
试题解析:
所以
故答案为
12、-1
【解析】
试题解析:∵根据正比例函数的定义,
可得:k-1≠0,|k|=1,
∴k=-1.
13、
【解析】
将化成最简二次根式,再合并同类二次根式.
【详解】
解:
故答案为:
本题考查了二次根式的运算,运用二次根式的乘除法法则进行二次根式的化简是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)点A的坐标为(-4,0),点B的坐标为(0,2);(2)y=-x
【解析】
(1)分别令y=0, x=0, 代入一次函数式,即可求出A、B点的坐标;
(2)先由OA和OB的长求出△AOB的面积,设C点坐标为(m,n),△AOC和△AOB等底不同高, 由 S△AOC= S△AOB 列式,求出C点的纵坐标n,把n代入一次函数式求出m, 从而得出C点坐标, 设直线OC的解析式为y=kx ,根据C点坐标用待定系数法求出k, 即可确定直线OC的函数解析式.
【详解】
(1)解:∵直线y= x+2,
∴当x=0时,y=2,当y=0时,x=-4
∵直线y= x+2交x轴于点A,交y轴于点B,
∴点A的坐标为(-4,0),点B的坐标为(0,2)
(2)解:由(1)知,点A的坐标为(-4,0),点B的坐标为(0,2),
∴OA=4,OB=2,
∴S△AOB= =4
S△AOC= S△AOB ,
∴S△AOC=2
设点C的坐标为(m,n)
∴ =2,得n=1,
∵点C在线段AB上,
∴1= m+2,得m=-2
∴点C的坐标为(-2,1)
设直线OC的解析式为y=kx
-2k=1,得k=- ,
即直线OC的函数解析式为y=-x
此题主要考查一次函数的应用,解题的关键是熟知一次函数的图像与性质及三角形的面积公式.
15、(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
【解析】
(1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案;
(2)根据平均数公式、中位数的求法和方差公式计算得到答案;
(3)从平均数和方差进行分析即可得到答案.
【详解】
解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,
补全图形如下:
(2)a==8(环),
c=×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,
b==7.5,
故答案为:8、1.2、7.5;
(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.
16、(1)方法①;方法②;(2)方案①购买更省钱,理由见解析
【解析】
(1)分别表示两种优惠方法的费用与购买水笔的只数之间的关系,
(2)分别求出两种方案下当x=12时y的值,比较并做出判断.
【详解】
解:(1)方法①:,即;
方法②:,即
(2)按方法①购买需要元;
按方法②购买需要元
答:按照方案①购买更省钱
考查一次函数的图象和性质、根据题意写出函数关系式是解题的关键.
17、见解析.
【解析】
如图,利用基本作图作MN垂直平分AB得到点E,先计算出∠BAC=36°,再利用AD是△ABC的角平分线得到∠DAB=18°,再利用线段垂直平分线的性质和等腰三角形的性质得到∠EBA=∠EAB=18°,接着利用三角形外角性质得到∠DEB=36,然后计算出∠DBE=36°得到∠DEB=∠DBE,从而得到DE=DB
【详解】
如图,点E为所作;
∵∠C=90°,∠B=54°,
∴∠BAC=36°,
∵AD是△ABC的角平分线,
∴∠DAB= ×36°=18°,
∵MN垂直平分AB,
∴EA=EB,
∴∠EBA=∠EAB=18°,
∴∠DEB=∠EAB+∠EBA=36°,
∵∠DBE=54°﹣18°=36°,
∴∠DEB=∠DBE,
∴DE=DB.
此题考查线段垂直平分线的性质和作图一基本作图,解题关键在于利用垂直平分线的性质解答
18、 (1)证明见解析;(2)四边形BECD是矩形.
【解析】
(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;
(2)结论:四边形BECD是矩形.由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴AB∥DC,AB=CD,
∴∠OEB=∠ODC,
又∵O为BC的中点,
∴BO=CO,
在△BOE和△COD中,
,
∴△BOE≌△COD(AAS);
∴OE=OD,
∴四边形BECD是平行四边形;
(2)解:若∠A=50°,∠BOD=100°时,四边形BECD是矩形.
理由如下:∵四边形ABCD是平行四边形,
∴∠BCD=∠A=50°,
∵∠BOD=∠BCD+∠ODC,
∴∠ODC=100°﹣50°=50°=∠BCD,
∴OC=OD,
∵BO=CO,OD=OE,
∴DE=BC,
∵四边形BECD是平行四边形,
∴四边形BECD是矩形;
此题主要考查了矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-4
【解析】
增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.
【详解】
解:,
去分母,方程两边同时乘以,得:,
由分母可知,分式方程的增根可能是2,
当时,,
.
故答案为.
考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
20、8
【解析】
利用平方差公式即可解答.
【详解】
解:原式=11-3
=8.
本题考查平方差公式,熟悉掌握是解题关键.
21、x>-1
【解析】
试题解析:根据题意得,x+1>0,
解得x>-1.
故答案为x>-1..
22、1
【解析】
根据一次函数的定义可得
【详解】
解:∵y=(2m﹣1)x3m﹣2+3是一次函数,
∴
解得m=1.
故答案为1.
考核知识点:一次函数.理解定义是关键.
23、
【解析】
分子分母同时约去公因式5xy即可.
【详解】
解:.
故答案为.
此题主要考查了分式的约分,关键是找出分子分母的公因式.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见详解;(2)1
【解析】
(1)先连接BD,交AC于O,由于四边形ABCD是平行四边形,易知OB=OD,OA=OC,而AE=CF,根据等式性质易得OE=OF,即可得出结论.
(2)由AE=CF,OE=OF,EF=2AE=2,得出AE=CF=OE=OF=1,AC=4,CE=3,证出△BCE是等腰直角三角形,得出BE=CE=3,得出▱ABCD的面积=2△ABC的面积=2××AC×BE,即可得出结果.
【详解】
(1)证明:连接BD,交AC于O,如图所示:
∵四边形ABCD是平行四边形,
∴OB=OD,OA=OC,
∵AE=CF,
∴OA-AE=OC-CF,
∴OE=OF,
∴四边形BFDE是平行四边形;
(2)解:∵AE=CF,OE=OF,EF=2AE=2,
∴AE=CF=OE=OF=1,
∴AC=4,CE=3,
∵∠ACB=45°,BE⊥AC,
∴△BCE是等腰直角三角形,
∴BE=CE=3,
∵四边形ABCD是平行四边形,
∴▱ABCD的面积=2△ABC的面积=2××AC×BE=4×3=1.
本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、三角形面积等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.
25、平均每次降价的百分数为25%.
【解析】
设平均每次降价的百分率为x,那么这种药品经过一次降价后的价格为48(1-x)元,经过两次降价后的价格为48(1-x)元,而此时药品价格是27元,根据这个等量关系可以列出方程.
【详解】
设平均每次降价的百分数为x,依题意得:
解得:
答:平均每次降价的百分数为25%。
此题考查一元二次方程的应用,解题关键在于根据题意列出方程.
26、(1)详见解析;(2)
【解析】
(1)根据正方形的性质可得AD=DC,∠ADC=∠C=90°,然后即可利用SAS证得结论;
(2)根据全等三角形的性质和余角的性质可得∠DGF=90°,根据勾股定理易求得AE的长,然后根据直角三角形斜边中线的性质即得结果.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AD=DC,∠ADC=∠C=90°,
∵DF = CE,
∴△ADF≌△DCE(SAS);
(2)解:∵△ADF≌△DCE,∴∠DAF=∠CDE,
∵∠DAF+∠DFA=90°,∴∠CDE +∠DFA=90°,
∴∠DGF=90°,∴∠AGE=90°,
∵AB=BC=6,EC=2,∴BE=4,
∵∠B=90°,∴AE==,
∵点H为AE的中点,∴GH=.
本题考查了正方形的性质、全等三角形的判定和性质、勾股定理和直角三角形的性质等知识,属于常见题型,熟练掌握上述基本知识是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(m)
11.8
11.9
12
12.1
12.2
频数
2
2
2
3
1
选手
A平均数
中位数
众数
方差
甲
a
8
8
c
乙
7.5
b
6和9
2.65
天津和平区天津市双菱中学2024年九年级数学第一学期开学经典模拟试题【含答案】: 这是一份天津和平区天津市双菱中学2024年九年级数学第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
天津和平区天津市第二南开中学2025届九年级数学第一学期开学达标检测试题【含答案】: 这是一份天津和平区天津市第二南开中学2025届九年级数学第一学期开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届天津和平区天津市双菱中学数学九年级第一学期开学综合测试试题【含答案】: 这是一份2025届天津和平区天津市双菱中学数学九年级第一学期开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。