


四川省攀枝花十七中学2024-2025学年数学九上开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式成立的是( )
A.B.=3
C.D.=3
2、(4分)下列化简正确的是( )
A.B.C.D.
3、(4分)如图,在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若,DE=3,则BC的长度是( )
A.6B.8C.9D.10
4、(4分)某班名学生的身高情况如下表:
则这名学生身高的众数和中位数分别是( )
A.B.C.D.
5、(4分)下列命题中,不正确的是( ).
A.平行四边形的对角线互相平分B.矩形的对角线互相垂直且平分
C.菱形的对角线互相垂直且平分D.正方形的对角线相等且互相垂直平分
6、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为( )
A.3.6B.4C.4.8D.5
7、(4分)四边形中,,,,,垂足分别为,则四边形一定是( )
A.正方形B.菱形C.平行四边形D.矩形
8、(4分)如果成立,那么实数a的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点B是反比例函数()图象上一点,过点B作x轴的平行线,交轴于点A,点C是轴上一点,△ABC的面积是2,则=______.
10、(4分)如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(2017,b)是此折线上一点,则b的值为_______________.
11、(4分)若关于x的一元二次方程x2﹣2x+4m=0有实数根,则m的取值范围是_____.
12、(4分)已知反比例函数的图象经过第一、三象限,则常数的取值范围是_____.
13、(4分)如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,,AE、BF分别交BD、AC于M、N两点,连OE、下列结论:;;;,其中正确的序数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校学生会在得知田同学患重病且家庭困难时,特向全校3000名同学发起“爱心”捐款活动,为了解捐款情况,学生会随机调查了该校某班学生的捐款情况,并将得到的数据绘制成如下两个统计图,请根据相关信息解答下列问题.
(1)该班的总人数为 ______ 人,将条形图补充完整;
(2)样本数据中捐款金额的众数 ______ ,中位数为 ______ ;
(3)根据样本数据估计该校3000名同学中本次捐款金额不少于20元有多少人?
15、(8分)在矩形ABCD中,点E、F分别在AB,BC上,△DEF为等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的长.
16、(8分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
17、(10分)我们把对角线互相垂直的四边形叫做垂美四边形.
(1)(概念理解)在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是___________.
(2)(性质探究)如图2,试探索垂美四边形ABCD的两组对边AB,CD与BC ,AD之间的数量关系,写出证明过程。
(3)(问题解决)如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外做正方形ACFG和正方形ABDE,连接CE,BG,GE, 已知AC=,BC=1 求GE的长.
18、(10分)已知一次函数的图像经过点(2,1)和(0,-2).
(1)求该函数的解析式;
(2)判断点(-4,6)是否在该函数图像上.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)把我们平时使用的一副三角板,如图叠放在一起,则∠的度数是___度.
20、(4分)在平行四边形ABCD中,若∠A+∠C=140°,则∠B= .
21、(4分)如图,在平面直角坐标系中,绕点旋转得到,则点的坐标为_______.
22、(4分)将矩形按如图所示的方式折叠,得到菱形,若,则菱形的周长为______.
23、(4分)利用计算机中“几何画板”软件画出的函数和的图象如图所示.根据图象可知方程的解的个数为3个,若m,n分别为方程和的解,则m,n的大小关系是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC在直角坐标系中.
(1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,画出△A1B1C1,并写出点A1,B1,C1的坐标;
(2)求△ABC的面积.
25、(10分)如图,在中,点分别在边上,已知,.求证:四边形是平行四边形.
26、(12分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=1.求DE的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分析:各项分别计算得到结果,即可做出判断.
详解:A.原式=,不符合题意;
B.原式不能合并,不符合题意;
C.原式=,不符合题意;
D.原式=|﹣3|=3,符合题意.
故选D.
点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.
2、A
【解析】
根据二次根式的性质以及合并同类二次根式法则,一一化简即可.
【详解】
A. 正确.
B. 错误.
C. 错误.
D. 错误. .
故选A.
此题考查二次根式的加减法,二次根式的性质与化简,解题关键在于掌握运算法则.
3、C
【解析】
根据平行线分线段成比例的性质,由,可得,根据相似三角形的判定与性质,由DE∥BC可知△ADE∽△ABC,可得,由DE=3,求得BC=9.
故选:C.
4、D
【解析】
根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.
【详解】
解:由图可得出这组数据中1.72m出现的次数最多,因此,这名学生身高的众数是1.72m;
把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这名学生身高的中位数是1.72m.
故选:D.
本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.
5、B
【解析】
A. ∵平行四边形的对角线互相平分,故正确;
B. ∵矩形的对角线互相平分且相等,故不正确;
C. ∵菱形的对角线互相垂直且平分 ,故正确;
D. ∵正方形的对角线相等且互相垂直平分,故正确;
故选B.
6、B
【解析】
过点D作DH⊥BC交AB于点H,根据△AFE∽△ACD和△AEG∽△ADH可得DC=DH,再由△BDH∽△BCA,根据相似三角形的性质列出方程即可求出CD.
【详解】
解:过点D作DH⊥BC交AB于点H,
∵EF⊥AC,∴EF∥BC,
∴△AFE∽△ACD,∴,
∵DH⊥BC,EG⊥EF,∴DH∥EG,
∴△AEG∽△ADH,∴,
∴
∵EF=EG,
∴DC=DH,
设DH=DC=x,则BD=12-x,
又∵△BDH∽△BCA,
∴,即,
解得:x=4,即CD=4,
故选B.
本题考查了相似三角形的判定和性质,根据相似的性质得到DC=DH是解题关键.
7、C
【解析】
根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理可得Rt△ADE≌Rt△CBF,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的判定定理即可得到结论.
【详解】
证明:∵BE=DF,
∴BE−EF=DF−EF,即BF=DE,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在Rt△ADE与Rt△CBF中,AD=BC,DE=BF,
∴Rt△ADE≌Rt△CBF(HL),
∴∠ADE=∠CBF,
∴AD∥BC,
∴四边形ABCD是平行四边形,
故选:C.
本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.
8、B
【解析】
即
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|=2,再根据反比例函数的图象位于第一象限即可求出k的值.
【详解】
连接OB.
∵AB∥x轴,∴S△AOB=S△ACB=2,根据题意可知:S△AOB|k|=2,又反比例函数的图象位于第一象限,k>0,则k=1.
故答案为1.
本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.
10、2
【解析】
分析:根据规律发现点O到点D为一个周期,根据其坐标规律即可解答.
详解:∵点A的坐标为(2,4)且OA=AB,
∴O(0,0),B(4,0),C(6,-4),D(8,0),
2017÷8=252……1,
∴b==2.
点睛:本题主要考查了点的坐标,发现其坐标规律是解题的关键.
11、m≤
【解析】
由关于x的一元二次方程x2﹣2x+4m=0有实数根,可知b2﹣4ac≥0,据此列不等式求解即可.
【详解】
解:由题意得,
4-4×1×4m≥0
解之得m≤
故答案为m≤.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
12、k>
【解析】
【分析】根据反比例函数图象经过第一、三象限,可得2k-1>0,解不等式即可得.
【详解】由题意得:2k-1>0,
解得:k>,
故答案为k>.
【点睛】本题考查了反比例函数的图象与性质,对于反比例函数y=,当k>0时,图象位于一、三象限,在每一象限内,y随着x的增大而减小;当k<0时,图象位于二、四象限,在每一象限内,y随着x的增大而增大.
13、
【解析】
易证得≌,则可证得结论正确;
由≌,可得,证得,选项正确;
证明是等腰直角三角形,求得选项正确;
证明≌,根据正方形被对角线将面积四等分,即可得出选项正确.
【详解】
解:四边形ABCD是正方形,
,,
在和中,
,
≌,
,
故正确;
由知:≌,
,
,
,
故正确;
四边形ABCD是正方形,
,,
是等腰直角三角形,
,
,
故正确;
四边形ABCD是正方形,
,,
在和中,
,
≌,
,
,
故正确;
故答案为:.
此题属于四边形的综合题考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质注意掌握全等三角形的判定与性质是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)50;补图见解析;(2)10,12.5;(3)660人
【解析】
(1)根据统计图中的数据可以求得额该班的总人数,可以求得捐款10元的人数,从而可以将条形统计图补充完整;
(2)根据补全的条形统计图可以得到相应的众数和中位数;
(3)根据统计图可以求得不少于20元有多少人数的占比,再乘以总人数即可.
【详解】
解:(1)14÷28%=50,
捐款10元的人数为:50-9-14-7-4=16,
故答案为:50,补全的条形统计图如右图所示,
(2)由补全的条形统计图可得,
样本数据中捐款金额的众数是10,中位数是: =12.5,
故答案为:10,12.5;
(3)捐款金额不少于20元的人数 人,
即该校3000名同学本次捐款金额不少于20元有660人.
此题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答
15、AD=2.
【解析】试题分析:先设AD=x.由△DEF为等腰直角三角形,可以得到一对边相等,一对角相等,再加上一对直角相等,那么△ADE和△BEF全等,就有AD=BE.那么利用边相等可得x+x+2=1,解之即得AD.
解:先设AD=x.
∵△DEF为等腰三角形.
∴DE=EF,∠FEB+∠DEA=90°.
又∵∠AED+∠ADE=90°.
∴∠FEB=∠EDA.
又∵四边形ABCD是矩形,
∴∠B=∠A=90°
∴△ADE≌△BEF(AAS).
∴AD=BE.
∴AD+CD=AD+AB=x+x+2=1.
解得x=2.
即AD=2.
考点:矩形的性质;全等三角形的判定与性质;等腰直角三角形.
16、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.
【解析】
(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;
(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.
【详解】
(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:
,
解得:.
经检验,是原方程的解.
所以,甲种图书售价为每本元,
答:甲种图书售价每本28元,乙种图书售价每本20元.
(2)设甲种图书进货本,总利润元,则
.
又∵,
解得:.
∵随的增大而增大,
∴当最大时最大,
∴当本时最大,
此时,乙种图书进货本数为(本).
答:甲种图书进货533本,乙种图书进货667本时利润最大.
本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.
17、菱形、正方形
【解析】
【分析】(1)根据垂美四边形的定义进行判断即可;
(2)根据垂直的定义和勾股定理解答即可;
(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.
【详解】(1)菱形的对角线互相垂直,符合垂美四边形的定义,
正方形的对角线互相垂直,符合垂美四边形的定义,
而平行四边形、矩形的对角线不一定垂直,不符合垂美四边形的定义,
故答案为:菱形、正方形;
(2)猜想结论:AD2+BC2=AB2+CD2,证明如下:
如图2,连接AC、BD,交点为E,则有AC⊥BD,
∵AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2;
(3)连接CG、BE,设AB与CE的交点为M
∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
又∵AG=AC,AB=AE,
∴△GAB≌△CAE(SAS),
∴∠ABG=∠AEC,
又∠AEC+∠AME=90°,∠AME=∠BMC,
∴∠ABG+∠BMC=90°,即CE⊥BG,
∴四边形CGEB是垂美四边形,
由(2)得,CG2+BE2=CB2+GE2,
∵AC=,BC=1 ∴AB=2,
∴ ,
∴ ,
∴ ,
GE的长是.
【点睛】本题考查了四边形综合题,涉及到正方形的性质、菱形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.
18、 (1)y=x-2;(2)见解析.
【解析】
(1)利用待定系数法进行求解即可;
(2)将x=-4代入函数解析式,求出y的值,看是否等于6,由此即可作出判断.
【详解】
(1)设该函数解析式为y=kx+b,
把点(2,1)和(0,-2)代入解析式得,
解得k=,b=-2,
∴该函数解析式为y=x-2;
(2)当x=-4时,y=×(-4)-2=-8≠6,
∴点(-4,6)不在该函数图象上.
本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、105
【解析】
根据三角板上的特殊角度,外角与内角的关系解答.
【详解】
根据三角板角度的特殊性可知∠AEB=45°,∠B=60°,
∵∠α是△BDE的外角,
∴∠α=∠AEB+∠B=45°+60°=105°
故答案为:105.
此题考查三角形的外角性质,解题关键在于掌握其性质定义和三角板的特殊角.
20、110°
【解析】
试题解析:∵平行四边形ABCD,
∴∠A+∠B=180°,∠A=∠C,
∵∠A+∠C=140°,
∴∠A=∠C=70°,
∴∠B=110°.
考点:平行四边形的性质.
21、
【解析】
连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交于点D,点D即为所求.
【详解】
解:连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交点即为点D,如图,旋转中心D的坐标为(3,0).
故答案为:(3,0).
本题考查了旋转的性质,掌握对应点连线的垂直平分线的交点就是旋转中心是解题的关键.
22、1
【解析】
根据折叠的性质得AD=AO,CO=BC,∠BCE=∠OCE,所以AC=2BC,则根据含30度的直角三角形三边的关系得∠CAB=30°,于是BC=AB=3,∠ACB=60°,接着计算出∠BCE=30°,然后计算出BE=BC=3,CE=2BE=6,于是可得菱形AECF的周长.
【详解】
解:∵矩形ABCD按如图所示的方式折叠,得到菱形AECF,
∴AD=AO,CO=BC,∠BCE=∠OCE,
而AD=BC,
∴AC=2BC,
∴∠CAB=30°,
∴BC=AB=3,∠ACB=60°,
∴∠BCE=30°,
∴BE=BC=3,
∴CE=2BE=6,
∴菱形AECF的周长=4×6=1.
故答案为:1
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系.
23、
【解析】
的解可看作函数与的交点的横坐标的值,可看作函数与的交点的横坐标的值,根据两者横坐标的大小可判断m,n的大小.
【详解】
解:作出函数的图像,与函数和的图象分别交于一点,所对的横坐标即为m,n的值,如图所示
由图像可得
故答案为:
本题考查了函数与方程的关系,将方程的解与函数图像相结合是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)A1(-3,0),B1(2,3),C1(-1,4),图略 (2)S△ABC=1
【解析】
(1)根据平移的性质,结合已知点A,B,C的坐标,即可写出A1、B1、C1的坐标,(2)根据点的坐标的表示法即可写出各个顶点的坐标,根据S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF,即可求得三角形的面积.
【详解】
(1)如图所示.根据题意得:A1、B1、C1的坐标分别是:A1(﹣3,0),B1(2,3),C1(﹣1,4);
(2)S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF
=4×53×53×12×4
=204
=1.
本题考查了点的坐标的表示,以及图形的面积的计算,不规则图形的面积等于规则图形的面积的和或差.
25、见解析
【解析】
根据题意证明EF∥AB,即可解答
【详解】
证明:∵DE∥BC,
∴∠ADE=∠B.
∵∠ADE=∠EFC,
∴∠EFC=∠B.
∴EF∥AB,
∴四边形BDEF是平行四边形.
此题考查平行四边形的判定,平行线的性质,解题关键在于证明EF∥AB
26、(1)、证明过程见解析;(2)、
【解析】
试题分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,从而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性质可得AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根据相似三角形的对应边成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的长.
试题解析:(1)证明:∵AD平分∠BAC,
∴∠BAD=∠DAC,
∵∠EAD=∠ADE,
∴∠BAD=∠ADE,
∴AB∥DE,
∴△DCE∽△BCA;
(2)解:∵∠EAD=∠ADE,
∴AE=DE,
设DE=x,
∴CE=AC﹣AE=AC﹣DE=1﹣x,
∵△DCE∽△BCA,
∴DE:AB=CE:AC,
即x:3=(1﹣x):1,
解得:x=,
∴DE的长是.
考点:相似三角形的判定与性质.
题号
一
二
三
四
五
总分
得分
身高
人数
四川省宜宾市南溪区三中学2024-2025学年九上数学开学经典模拟试题【含答案】: 这是一份四川省宜宾市南溪区三中学2024-2025学年九上数学开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省巴中学2025届数学九上开学经典试题【含答案】: 这是一份四川省巴中学2025届数学九上开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
上海延安中学2024-2025学年九上数学开学经典模拟试题【含答案】: 这是一份上海延安中学2024-2025学年九上数学开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。