四川省乐山四中学2024年数学九上开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式组的解集在数轴上可表示为( )
A.B.C.D.
2、(4分)如图,在△中,、是△的中线,与相交于点,点、分别是、的中点,连结.若=6cm,=8cm,则四边形DEFG的周长是( )
A.14cmB.18 cm
C.24cmD.28cm
3、(4分)下列四组线段中,不能作为直角三角形三条边的是( )
A.3cm,4cm,5cmB.2cm,2cm,2cmC.2cm,5cm,6cmD.5cm,12cm,13cm
4、(4分)如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为( )
A.1B.3C.6D.12
5、(4分)矩形 与矩形 如图放置,点 共线,点共线,连接 ,取的中点 ,连接 .若 ,则的长为
A.B.C.D.
6、(4分)如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G.连接EF,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.则正确结论的序号是( )
A.①③B.②④C.①③④D.②③④
7、(4分)直线不经过【 】
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、(4分)生物刘老师对本班50名学生的血型进行了统计,列出如下统计表.则本班O型血的有( )
A.17人B.15人C.13人D.5人
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平行四边形ABCD中,∠A=45°,BC=cm,则AB与CD之间的距离为________cm.
10、(4分)若x是的整数部分,则的值是 .
11、(4分)苏州市2017年6月份最后六大的最高气温分别为31,34,36,27,25,33(单位:℃).这组数据的极差是_____.
12、(4分) “a的3倍与b的差不超过5”用不等式表示为__________.
13、(4分)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,点D、E、F是三边的中点,则△DEF的周长是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)列方程或方程组解应用题:
几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:
根据对话中的信息,请你求出这些小伙伴的人数.
15、(8分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数(度)是镜片焦距(厘米)()的反比例函数,调查数据如下表:
(1)求与的函数表达式;
(2)若小明所戴近视眼镜镜片的度数为度,求该镜片的焦距.
16、(8分)先化简,再求值:,在﹣2,0,1,2四个数中选一个合适的代入求值.
17、(10分)已知:线段a,c.
求作:△ABC,使BC=a,AB=c,∠C=90°
18、(10分)如图,有一个直角三角形纸片,两直角边cm, cm,现将直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,,,,点、分别是、的中点,交的延长线于,则四边形的面积为______.
20、(4分)已知是一次函数,则__________.
21、(4分)如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则的度数等于___________.
22、(4分)如图是甲、乙两名跳远运动员的10次测验成绩(单位:米)的折线统计图,观察图形,写出甲、乙这10次跳远成绩之间的大小关系:S甲2_____S乙2(填“>“或“<”)
23、(4分)一组数据x1,x2,…,xn的平均数是2,方差为1,则3x1,3x2,…,3xn,的方差是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某类儿童服装以每件40元的价格购进800件,售价为每件80元,五月售出200件.六月,批发商决定采取“降价促销”的方式喜迎“六一”,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;七月,批发商将对剩余的童装一次性清仓销售,清仓时单价为40元,设六月单价降低x元
(1)填表
(2)如果批发商希望通过销售这批T恤获利9000元,那么六月的单价应是多少元?
25、(10分)在2018年俄罗斯世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.
(1)求出y与x的函数关系式.
(2)当销售单价为多少元时,月销售额为14000元?
26、(12分)如图,在中,,点是边上的中点,、分别垂直、于点和.求证:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:解不等式x+2>2得:x>﹣2;解不等式得:x≤2,所以次不等式的解集为:﹣2<x≤2.故选A.
考点:2.在数轴上表示不等式的解集;2.解一元一次不等式组.
2、A
【解析】
试题分析:∵点F、G分别是BO、CO的中点,BC = 8cm
∴FG=BC=4 cm
∵BD、CE是△ABC的中线
∴DE=BC=4 cm
∵点F、G、E、D分别是BO、CO、AB、AC的中点,AO = 6cm
∴EF=AO=3 cm,DG=AO=3 cm
∴四边形DEFG的周长="EF+FG+DG+DE=14" cm
故选A
考点:1、三角形的中位线;2、四边形的周长
3、C
【解析】
分析:要判断是否为直角三角形,需验证两小边的平方和是否等于最长边的平方.
详解:A、3²+4²=5²,能构成直角三角形,不符合题意;
B、2²+2²=,能构成直角三角形,不符合题意;
C、2²+5²≠6²,不能构成直角三角形,符合题意;
D、5²+12²=13²,能构成直角三角形,不符合题意.
故选C.
点睛:本题考查了勾股定理的逆定理:已知△ABC的三边满足a²+b²=c²,则△ABC是直角三角形.
4、C
【解析】
作AH⊥OB于H,根据平行四边形的性质得AD∥OB,则S平行四边形ABCD=S矩形AHOD,再根据反比例函数y=(k≠0)系数k的几何意义得到S矩形AHOD=1,所以有S平行四边形ABCD=1.
【详解】
作AH⊥OB于H,如图,
∵四边形ABCD是平行四边形ABCD,
∴AD∥OB,
∴S平行四边形ABCD=S矩形AHOD,
∵点A是反比例函数y=−(x<0)的图象上的一点,
∴S矩形AHOD=|-1|=1,
∴S平行四边形ABCD=1.
故选C.
本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
5、A
【解析】
延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.
【详解】
解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=3、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD-AP=3-1=2,
∵CG=EF=3、CD=1,
∴DG=2,△DGP是等腰直角三角形,
则GH=PG= ×
故选:A.
本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
6、C
【解析】
根据直角三角形斜边上的中线等于斜边的一半,可得FA=FC,根据等边三角形的性质可得EA=EC,根据线段垂直平分线的判定可得EF是线段AC的垂直平分线;根据条件及等边三角形的性质可得∠DFA=∠EAF=90°,DA⊥AC,从而得到DF∥AE,DA∥EF,可得到四边形ADFE为平行四边形而不是菱形;根据平行四边形的对角线互相平分可得AD=AB=2AF=4AG;易证DB=DA=EF,∠DBF=∠EFA=60°,BF=FA,即可得到△DBF≌△EFA.
【详解】
连接FC,如图所示:
∵∠ACB=90°,F为AB的中点,
∴FA=FB=FC,
∵△ACE是等边三角形,
∴EA=EC,
∵FA=FC,EA=EC,
∴点F、点E都在线段AC的垂直平分线上,
∴EF垂直平分AC,即EF⊥AC;
∵△ABD和△ACE都是等边三角形,F为AB的中点,
∴DF⊥AB即∠DFA=90°,BD=DA=AB=2AF,∠DBA=∠DAB=∠EAC=∠ACE=60°.
∵∠BAC=30°,
∴∠DAC=∠EAF=90°,
∴∠DFA=∠EAF=90°,DA⊥AC,
∴DF∥AE,DA∥EF,
∴四边形ADFE为平行四边形而不是菱形;
∵四边形ADFE为平行四边形,
∴DA=EF,AF=2AG,
∴BD=DA=EF,DA=AB=2AF=4AG;
在△DBF和△EFA中, ,
∴△DBF≌△EFA(SAS);
综上所述:①③④正确,
故选:C.
本题主要考查了直角三角形斜边上的中线等于斜边的一半、等边三角形的性质、线段垂直平分线的判定、平行四边形判定与性质、全等三角形的判定与性质,解题关键在于作辅助线.
7、B。
【解析】一次函数图象与系数的关系。
【分析】∵,∴
∴的图象经过第一、三、四象限,不经过第二象限。故选B。
8、D
【解析】
频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.
【详解】
解:本班O型血的有50×0.1=5(人),
故选:D.
本题考查了频率与频数,正确理解频率频数的意义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
分析:过点D作DE⊥AB,根据等腰直角三角形ADE的性质求出DE的长度,从而得出答案.
详解:过点D作DE⊥AB,∵∠A=45°, DE⊥AB, ∴△ADE为等腰直角三角形,
∵AD=BC=, ∴DE=1cm, 即AB与CD之间的距离为1cm.
点睛:本题主要考查的是等腰直角三角形的性质,属于基础题型.解决这个问题的关键就是作出线段之间的距离,根据直角三角形得出答案.
10、1
【解析】
3<<4
x=3
==1
故答案为1.
11、32
【解析】
根据极差的定义进行求解即可得答案.
【详解】
这组数据的最大值是36,最小值是25,
这组数据的极差是:36﹣25=1(℃),
故答案为1.
本题考查了极差,掌握求极差的方法是解题的关键,求极差的方法是用一组数据中的最大值减去最小值.
12、
【解析】
根据“a的3倍与b的差不超过5”,则.
【详解】
解:根据题意可得出:;
故答案为:
此题主要考查了由实际问题抽象出一元一次不等式,注意不大于即为小于等于.
13、1
【解析】
先根据勾股定理求出BC,再根据三角形中位线定理求出△DEF的三边长,然后根据三角形的周长公式计算即可.
【详解】
解:在Rt△ABC中,∵∠C=90°,AC=6,AB=10,∴BC==8,
∵点D、E、F是三边的中点,∴DE=AC=3,DF=AB=5,EF=BC=4,
∴△DEF的周长=3+4+5=1.
故答案为:1.
本题考查的是勾股定理和三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、1.
【解析】
试题分析:设小伙伴的人数为x人,根据打折后票价列等式,解方程即可得到x值,注意最后要检验.
试题解析:解:设小伙伴的人数为x人,
根据题意,得:
解得:x=1,
经检验x=1是原方程的根,且符合题意.
答:小伙伴的人数为1人.
考点:列分式方程解应用题.
15、(1),;(2)该镜片的焦距为.
【解析】
(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;
(2)在解析式中,令y=500,求出x的值即可.
【详解】
(1)根据题意,设与的函数表达式为
把,代入中,得
∴与的函数表达式为.
(2)当时,
答:该镜片的焦距为.
考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.
16、,1.
【解析】
试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.
试题解析:原式=(
=
=2(x+4)
当x=1时,原式=1.
17、详见解析
【解析】
过直线m上点C作直线n⊥m,再在m上截取CB=a,然后以B点为圆心,c为半径画弧交直线n于A,则△ABC满足条件.
【详解】
解:如图,△ABC为所作.
本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
18、CD的长为2cm.
【解析】
首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x,则BD=8-x,在△BDE中,利用勾股定理列方程求解即可.
【详解】
解:在Rt三角形中,由勾股定理可知:
由折叠的性质可知:DC=DE,AC=AE,∠DEA=∠C.
∴BE=AB-AE=10-6=4,∠DEB=90°.
设DC=x,则BD=8-x.
在Rt△BDE中,由勾股定理得:BE1+ED1=BD1,即41+x1=(8-x)1.
解得:x=2.
∴CD=2.
本题主要考查的是翻折变换、勾股定理的应用,利用翻折的性质和勾股定理表示出△DBE的三边长是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、12
【解析】
由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以,又因为BD=DC,所以,所以,从而求出答案;
【详解】
解:∵AF∥BC,
∴∠AFC=∠FCD,
在△AEF与△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=DC,
∵BD=DC,
∴AF=BD,
∴四边形AFBD是平行四边形,
∴,
又∵BD=DC,
∴,
∴,
∵∠BAC=90°,AB=4,AC=6,
∴S△ABC=AB×AC=×4×6=12,
∴四边形AFBD的面积为:12;
故答案为:12.
本题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,掌握平行四边形的判定与性质,全等三角形的判定与性质是解题的关键.
20、
【解析】
根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.
【详解】
解;由y=(m-1)xm2−8+m+1是一次函数,得
,
解得m=-1,m=1(不符合题意的要舍去).
故答案为:-1.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
21、30°
【解析】
根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.
【详解】
∵CC′∥AB,
∴∠ACC′=∠CAB=75°,
∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°-2∠ACC′=180°-2×75°=30°,
∴∠CAC′=∠BAB′=30°.
故答案为:30°.
本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.
22、<
【解析】
观察图形,根据甲、乙两名运动员成绩的离散程度的大小进行判断即可得..
【详解】
由图可得,甲这10次跳远成绩离散程度小,而乙这10次跳远成绩离散程度大,
∴S甲2<S乙2,
故答案为<.
本题考查了方差的运用,熟练运用离散程度的大小来确定方差的大小是解题的关键.
23、1
【解析】
根据x1,x2,x3,…xn的方差是1,可得出3x1,3x2,3x3,…,3xn的方差是1×32即可.
【详解】
∵数据:x1,x2,x3,…,xn的平均数是2,方差是1,
∴数据3x1,3x2,3x3,…,3xn的方差是1×1=1.
故答案为:1.
本题考查了方差,若在原来数据前乘以同一个数,方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.
二、解答题(本大题共3个小题,共30分)
24、(1)80﹣x,200+1x,800﹣200﹣(200+1x)或400﹣1x;(2)六月的单价应该是70元.
【解析】
(1)根据题意直接用含x的代数式表示即可;
(2)销售额﹣进价=利润,作为相等关系列函数关系式得出即可.
【详解】
解:(1)80﹣x,200+1x,800﹣200﹣(200+1x)或400﹣1x.
故答案是:
(2)根据题意,得(40﹣x)(200+1x)=9000,
解得x1=x2=1.
当x=1时,80﹣x=70>40
答:六月的单价应该是70元.
此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,有关销售问题中的等量关系一般为:利润=售价﹣进价.
25、 (1) y=﹣4x+480;(2) 70元.
【解析】
(1)根据销售量=240-(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价.
【详解】
解:(1)根据题意得:y=240﹣4(x﹣60)=﹣4x+480;
(2)根据题意得:x(﹣4x+480)=14000,
整理得:x2﹣120x+3500=0,即(x﹣50)(x﹣70)=0,
解得:x=50(不合题意,舍去)或x=70,
则当销售单价为70元时,月销售额为14000元.
本题主要考查一元一次方程与一元二次方程在解实际问题中的应用,弄清题意,找出题中的等量关系列出正确的方程是解题的关键.
26、见解析
【解析】
证法一:连接AD,由三线合一可知AD平分∠BAC,根据角平分线的性质定理解答即可;证法二:根据“AAS”△BED≌△CFD即可.
【详解】
证法一:连接AD.
∵AB=AC,点D是BC边上的中点,
∴AD平分∠BAC(等腰三角形三线合一性质),
∵DE、DF分别垂直AB、AC于点E和F,
∴DE=DF(角平分线上的点到角两边的距离相等).
证法二:在△ABC中,
∵AB=AC,
∴∠B=∠C(等边对等角).
∵点D是BC边上的中点,
∴BD=DC ,
∵DE、DF分别垂直AB、AC于点E和F,
∴∠BED=∠CFD=90°.
在△BED和△CFD中
∵,
∴△BED≌△CFD(AAS),
∴DE=DF(全等三角形的对应边相等).
本题考查了等腰三角形的性质,角平分线的性质,以及全等三角形的判定与性质,熟练掌握角平分线的性质以及全等三角形的判定与性质是解答本题的关键.
题号
一
二
三
四
五
总分
得分
血型
A型
B型
AB型
O型
频率
0.34
0.3
0.26
0.1
眼镜片度数(度)
…
镜片焦距(厘米)
…
时间
五月
六月
七月清仓
单价(元/件)
80
40
销售量(件)
200
时间
第一个月
第二个月
清仓时
单价(元)
80
80﹣x
40
销售量(件)
200
200+1x
800﹣200﹣(200+1x)或400﹣1x
四川省乐山市实验中学2024-2025学年数学九上开学监测试题【含答案】: 这是一份四川省乐山市实验中学2024-2025学年数学九上开学监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省乐山市夹江中学2025届九上数学开学经典试题【含答案】: 这是一份四川省乐山市夹江中学2025届九上数学开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省乐山市夹江中学2024-2025学年数学九上开学检测模拟试题【含答案】: 这是一份四川省乐山市夹江中学2024-2025学年数学九上开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。