|试卷下载
终身会员
搜索
    上传资料 赚现金
    四川省金堂县2024-2025学年九年级数学第一学期开学调研试题【含答案】
    立即下载
    加入资料篮
    四川省金堂县2024-2025学年九年级数学第一学期开学调研试题【含答案】01
    四川省金堂县2024-2025学年九年级数学第一学期开学调研试题【含答案】02
    四川省金堂县2024-2025学年九年级数学第一学期开学调研试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省金堂县2024-2025学年九年级数学第一学期开学调研试题【含答案】

    展开
    这是一份四川省金堂县2024-2025学年九年级数学第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)两组数据:98,99,99,100和98.5,99,99,99.5,则关于以下统计量说法不正确的是( )
    A.平均数相等
    B.中位数相等
    C.众数相等
    D.方差相等
    2、(4分)如果,那么( )
    A.a≥﹣2B.﹣2≤a≤3
    C.a≥3D.a为一切实数
    3、(4分)如果aA.a+24、(4分)下列各等式正确的是( )
    A.B.
    C.D.
    5、(4分)某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
    则这50名学生这一周在校的平均体育锻炼时间是
    A.小时B.小时C.小时D.7小时
    6、(4分)若分式有意义,则的取值范围为( )
    A.B.C.D.
    7、(4分)等腰三角形的两条边长分别为3和4,则其周长等于( )
    A.10B.11C.10或11D.不确定
    8、(4分)下列图形中,既是轴对称图形又是中心对称图形的是
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若ab<0,化简的结果是____.
    10、(4分)如图,在平面直角坐标系内所示的两条直线,其中函数随增大而减小的函数解析式是______________________
    11、(4分)如果根式有意义,那么的取值范围是_________.
    12、(4分)已知菱形的两条对角线长分别为4和9,则菱形的面积为_____.
    13、(4分) 如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(6,8),则点C的坐标是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)为了了解高峰时段37路公交车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:16,25,18,1,25,30,28,29,25,1.
    (1)请求出这10个班次乘该路车人数的平均数、众数与中位数;
    (2)如果37路公交车在高峰时段从总站共发出50个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?
    15、(8分)在正方形网格中,点A、B、C都是格点,仅用无刻度的直尺按下列要求作图.

    (1)在图1中,作线段的垂直平分线;
    (2)在图2中,作的角平分线.
    16、(8分)(1)分解因式: x(a-b)+y(a-b)
    (2)解分式方程:
    17、(10分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
    根据以上信息,整理分析数据如下:
    (1)写出表格中a,b,c的值;
    (2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.
    18、(10分)安德利水果超市购进一批时令水果,20天销售完毕,超市将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量(千克)与销售时间(天)之间的函数关系如图甲所示,销售单价(元/千克)与销售时间(天)之间的函数关系如图乙所示。
    (1)直接写出与之间的函数关系式;
    (2)分别求出第10天和第15天的销售金额。
    (3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)有一道题“先化简,再求值:,其中”.小玲做题时把“”错抄成“”,她的计算结果正确吗?______.(填正确或错误)
    20、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形AnBn∁nCn﹣1按如图方式放置,点A1、A2、A3、…在直线y=x+1上,点C1、C2、C3、…在x轴上.已知A1点的坐标是(0,1),则点B3的坐标为_____,点Bn的坐标是_____.
    21、(4分)先化简:,再对a选一个你喜欢的值代入,求代数式的值.
    22、(4分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.
    23、(4分)当______时,分式方程会产生增根.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.
    (1)求证:四边形CMAN是平行四边形.
    (2)已知DE=4,FN=3,求BN的长.
    25、(10分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.
    (2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.
    (3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.
    26、(12分)先化简,再求值:,其中x=.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据平均数的计算公式、众数和中位数的概念以及方差的计算公式计算,判断即可.
    【详解】
    (98+99+99+100)=99,(98.5+99+99+99.5)=99,平均数相等,A不合题意;
    两组数据:98,99,99,100和98.5,99,99,99.5的中位数都是99,众数是99,则中位数相等,众数相等,B、C不合题意;
    [(98﹣99)2+(99﹣99)2+(99﹣99)2+[100﹣99)2][(98.5﹣99)2+(99﹣99)2+(99﹣99)2+[99.5﹣99)2],方差不相等,D符合题意.
    故选D.
    本题考查了平均数、众数、中位数和方差,掌握它们的概念以及计算公式是解题的关键.
    2、C
    【解析】
    直接利用二次根式有意义的条件得出关于不等式组,解不等式组进而得到的取值范围.
    【详解】
    解:∵

    解得:
    故选:C
    本题考查了二次根式有意义的条件以及解不等式组等知识点,能根据已知条件得到关于的不等式组是解题的关键.
    3、C
    【解析】
    根据不等式的性质,逐项判断即可.
    【详解】
    解:A.,,选项结论正确,不符合题意;
    B.,,选项结论正确,不符合题意;
    C.,,选项结论错误,符合题意;
    D.,,选项结论正确,不符合题意.
    故选:C.
    此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
    4、B
    【解析】
    解:选项A. ,错误;
    选项B. ,正确;
    选项C. ,错误;
    选项D. ,错误.
    故选B.
    本题考查;;;;;;灵活应用上述公式的逆用是解题关键.
    5、C
    【解析】
    根据加权平均数的计算公式列出算式,再进行计算即可.
    【详解】
    解:


    小时.
    故这50名学生这一周在校的平均体育锻炼时间是6.6小时.
    故选C.
    本题考查加权平均数,解题的关键是熟练掌握加权平均数的计算公式.
    6、A
    【解析】
    直接利用分式有意义的条件即分母不为零,进而得出答案.
    【详解】
    解:∵分式有意义,
    ∴x+1≠0,
    解得:x≠-1.
    故选A.
    此题主要考查了分式有意义的条件,正确把握定义是解题关键.
    7、C
    【解析】
    根据等腰三角形的性质即可判断.
    【详解】
    ∵等腰三角形的两条边长分别为3和4
    ∴第三边为3或4,
    故周长为10或11,故选C
    此题主要考查等腰三角形的周长,解题的关键是熟知等腰三角形的性质.
    8、D
    【解析】
    根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
    B. 不是轴对称图形,是中心对称图形,故不符合题意;
    C. 是轴对称图形,但不是中心对称图形,故不符合题意;
    D. 既是轴对称图形又是中心对称图形,故符合题意.
    故选D.
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    的被开方数a2b>1,而a2>1,所以b>1.又因为ab<1,所以a、b异号,所以a<1,所以.
    10、;
    【解析】
    观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.
    【详解】
    观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.因此可分析的的图象随着随增大而减小的.
    故答案为
    本题主要考查一次函数的单调性,当k>0是,随增大而增大,当k<0时,随增大而减小.
    11、
    【解析】
    根据二次根式的性质和,被开方数大于或等于0,可以求出x的范围.
    【详解】
    根据题意得:x+2⩾0,
    解得:x⩾−2.
    故答案是:x⩾−2.
    此题考查二次根式有意义的条件,难度不大
    12、1
    【解析】
    利用菱形的面积等于对角线乘积的一半求解.
    【详解】
    菱形的面积=×4×9=1.
    故答案为1.
    此题考查菱形的性质,难度不大
    13、(16,8).
    【解析】
    过A、C作AE⊥x轴,CF⊥x轴,根据菱形的性质可得AO=AC=BO=BC=5,再证明△AOE≌△CBF,可得EO=BF,然后可得C点坐标.
    【详解】
    解:过A、C作AE⊥x轴,CF⊥x轴,
    ∵点A的坐标是(6,8),
    ∴AO=10,
    ∵四边形AOBC是菱形,
    ∴AO=AC=BO=BC=10,AO∥BC,
    ∴∠AOB=∠CBF,
    ∵AE⊥x轴,CF⊥x轴,
    ∴∠AEO=∠CFO=90°,
    在△AOE和△CBF中

    ∴△AOE≌△CBF(AAS),
    ∴EO=BF=6,
    ∵BO=10,
    ∴FO=16,
    ∴C(16,8).
    故答案为:(16,8).
    此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形四边相等.
    三、解答题(本大题共5个小题,共48分)
    14、解:(1)平均数是25人,众数是25人,中位数是26人;(2)1250 人.
    【解析】
    (1)根据平均、众数和中位数的概念分别求解即可;
    (2)用平均数乘以发车班次就是乘客的总人数.
    【详解】
    解:(1)平均数=(16+25+18+1+25+30+28+29+25+1)=25(人),
    这组数据按从小到大的顺序排列为:16,18,25,25,25,1,1,28,29,30,
    中位数为:;
    众数为:25;
    (2)50×25=1250(人);
    答:在高峰时段从总站乘该路车出行的乘客共有1250人.
    本题考查了众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.
    15、见解析.
    【解析】
    (1)直接利用矩形的性质得出AB的中点,再利用AB为底得出等腰三角形进而得出答案;
    (2)借助网格利用等腰三角形的性质得出答案.
    【详解】
    (1)如图所示:直线CD即为所求;
    (2)如图所示:射线BD即为所求.
    此题主要考查了应用设计与作图,正确借助网格分析是解题关键.
    16、(1)(a-b)(x+y);(2)
    【解析】
    (1)提出公因式(a-b)即可;
    (2)根据分式方程的解法,去分母,即可解出.
    【详解】
    (1)分解因式:
    解:原式=
    (2)解分式方程:
    解:去分母得,
    解这个方程,得
    经检验:是原方程的解.
    本题考查了因式分解及分式方程的解法,解题的关键是掌握提公因式法及分式方程的解法.
    17、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析
    【解析】
    (1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;
    (2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.
    【详解】
    (1),
    将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,
    ∴乙射击的中位数,
    ∵乙射击的次数是10次,
    ∴=4.2;
    (2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.
    此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.
    18、(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元 .
    【解析】
    (1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;
    (2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额;
    (3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式-6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据p=x+12(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.
    【详解】
    解:(1) 分两种情况:
    ①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
    ∵直线y=k1x过点(15,30),
    ∴15k1=30,解得k1=2,
    ∴y=2x(0≤x≤15);
    ②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
    ∵点(15,30),(20,0)在y=k2x+b的图象上,
    ∴ ,解得: ,
    ∴y=-6x+120(15<x≤20);
    综上,可知y与x之间的函数关系式为:
    (2) )∵第10天和第15天在第10天和第20天之间,
    ∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
    ∵点(10,10),(20,8)在p=mx+n的图象上,
    ∴ ,解得: ,
    ∴(10≤x≤20),
    当时,销售单价为10元,销售金额为10×20=200(元);当时,销售单价为9元,销售金额为9×30=270(元);
    (3) 若日销售量不低于1千克,则,当时,,由得;当时,,由,得,∴,
    ∴“最佳销售期”共有16-12+1=5(天).
    ∵,,
    ∴随的增大而减小,∴当时,
    取12时有最大值,此时,即销售单价最高为9.6元 .
    故答案为:(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元 .
    本题考查一次函数的应用,有一定难度.解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、正确
    【解析】
    先去括号,再把除法变为乘法化简,化简后代入数值判断即可.
    【详解】
    解:,
    因为x=或x=时,x2的值均为3,所以原式的计算结果都为7,
    所以把“”错抄成“”,计算结果也是正确的,
    故答案为:正确.
    本题考查分式的化简求值,应将除法转化为乘法来做,并分解因式、约分,得到化简的目的.同时也考查了学生的计算能力.
    20、(7,4)(2n﹣1,2n﹣1).
    【解析】
    根据一次函数图象上点的坐标特征可得出点A1的坐标,结合正方形的性质可得出点B1的坐标,同理可得出点B2、B3、B4、…的坐标,再根据点的坐标的变化即可找出点Bn的坐标.
    【详解】
    当x=0时,y=x+1=1,
    ∴点A1的坐标为(0,1).
    ∵四边形A1B1C1O为正方形,
    ∴点B1的坐标为(1,1).
    当x=1时,y=x+1=2,
    ∴点A2的坐标为(1,2).
    ∵四边形A2B2C2C1为正方形,
    ∴点B2的坐标为(3,2).
    同理可得:点A3的坐标为(3,4),点B3的坐标为(7,4),点A4的坐标为(7,8),点B4的坐标为(15,8),…,
    ∴点Bn的坐标为(2n﹣1,2n﹣1).
    故答案为:(7,4), (2n﹣1,2n﹣1)
    本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合正方形的性质找出点Bn的坐标是解题的关键.
    21、;3
    【解析】
    原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a=3代入计算即可求出值.
    【详解】
    原式.
    ∵且
    ∴当a=3时,原式=
    此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    22、1
    【解析】
    求出x1,x2即可解答.
    【详解】
    解:∵x2﹣x=0,
    ∴x(x﹣1)=0,
    ∵x1<x2,
    ∴解得:x1=0,x2=1,
    则x2﹣x1=1﹣0=1.
    故答案为:1.
    本题考查一元二次方程的根求解,按照固定过程求解即可,较为简单.
    23、1
    【解析】
    解分式方程,根据增根的含义:使最简公分母为0的根叫做分式方程的增根,即可求得.
    【详解】
    解:去分母得,解得,
    而此方程的最简公分母为,令故增根为.
    即,解得.
    故答案为1.
    本题考查解分式方程,难度不大,是中考的常考点,熟练掌握增根的含义是顺利解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)1.
    【解析】
    试题分析:(1)通过AE⊥BD,CF⊥BD证明AE∥CF,再由四边形ABCD是平行四边形得到AB∥CD,由两组对边分别平行的四边形是平行四边形可证得四边形CMAN是平行四边形;(2)证明△MDE≌∠NBF,根据全等三角形的性质可得DE=BF=4,再由勾股定理得BN=1.
    试题解析:(1)证明:∵AE⊥BD CF⊥BD
    ∴AE∥CF
    又∵四边形ABCD是平行四边形
    ∴AB∥CD
    ∴四边形CMAN是平行四边形
    (2)由(1)知四边形CMAN是平行四边形
    ∴CM=AN.
    又∵四边形ABCD是平行四边形
    ∴ AB=CD,∠MDE=∠NBF.
    ∴AB-AN=CD-CM,即DM=BN.
    在△MDE和∠NBF中
    ∠MDE=∠NBF,∠DEM=∠BFN=90°,DM=BN
    ∴△MDE≌∠NBF
    ∴DE=BF=4,
    由勾股定理得BN===1.
    答:BN的长为1.
    考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.
    25、(1)见解析(2)(4,2)(3)(6,0)
    【解析】
    (1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;
    (2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;
    (3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.
    【详解】
    证明:∵∠ACB=90°,AD⊥l
    ∴∠ACB=∠ADC
    ∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE
    ∴∠CAD=∠BCE,
    ∵∠ADC=∠CEB=90°,AC=BC
    ∴△ACD≌△CBE,
    ∴AD=CE,CD=BE,
    (2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,
    由已知得OM=ON,且∠OMN=90°
    ∴由(1)得MF=NG,OF=MG,
    ∵M(1,3)
    ∴MF=1,OF=3
    ∴MG=3,NG=1
    ∴FG=MF+MG=1+3=4,
    ∴OF﹣NG=3﹣1=2,
    ∴点N的坐标为(4,2),
    (3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,
    对于直线y=﹣3x+3,由x=0得y=3
    ∴P(0,3),
    ∴OP=3
    由y=0得x=1,
    ∴Q(1,0),OQ=1,
    ∵∠QPR=45°
    ∴∠PSQ=45°=∠QPS
    ∴PQ=SQ
    ∴由(1)得SH=OQ,QH=OP
    ∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1
    ∴S(4,1),
    设直线PR为y=kx+b,则 ,解得
    ∴直线PR为y=﹣x+3
    由y=0得,x=6
    ∴R(6,0).
    本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
    26、,
    【解析】
    先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
    【详解】
    解:原式=


    =.
    当x=时,
    原式==.
    本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
    题号





    总分
    得分
    时间小时
    5
    6
    7
    8
    人数
    10
    10
    20
    10
    平均成绩/环
    中位数/环
    众数/环
    方差

    a
    7
    7
    1.2

    7
    b
    8
    c
    相关试卷

    四川省成都市金堂县2025届九年级数学第一学期开学调研试题【含答案】: 这是一份四川省成都市金堂县2025届九年级数学第一学期开学调研试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    贵州铜仁松桃县2024-2025学年九年级数学第一学期开学调研试题【含答案】: 这是一份贵州铜仁松桃县2024-2025学年九年级数学第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广西柳州市柳北区2024-2025学年九年级数学第一学期开学调研试题【含答案】: 这是一份广西柳州市柳北区2024-2025学年九年级数学第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map