2024-2025学年安徽省临泉数学九年级第一学期开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,一次函数与的图像互相平行,如果这两个函数的部分自变量和对应的函数值如下表所示:
那么的值是( )
A.B.C.D.
2、(4分)一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数为( )
A.5B.6C.7D.8
3、(4分)如图,正方形纸片ABCD的边长为4 cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是( )
\
A.2 cmB.4 cmC. cmD.1 cm
4、(4分)如图,在同一平面直角坐标系中,函数与函数的图象大致是( )
A.B.
C.D.
5、(4分)如图,与的形状相同,大小不同,是由的各顶点变化得到的,则各顶点变化情况是( )
A.横坐标和纵坐标都乘以2B.横坐标和纵坐标都加2
C.横坐标和纵坐标都除以2D.横坐标和纵坐标都减2
6、(4分)小华的爷爷每天坚持体育锻炼,某天他慢跑从家到中山公园,打了一会儿太极拳后坐公交车回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图像是( ).
A.B.C.D.
7、(4分)如图,一块等腰直角的三角板,在水平桌面上绕点按顺时针方向旋转到的位置,使三点共线,那么旋转角度的大小为( )
A.B.C.D.
8、(4分)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是( )
A.cmB.cmC.cmD.5cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若a,b都是实数,b=+﹣2,则ab的值为_____.
10、(4分)如图,直线分别与轴、轴交于点,点是反比例函数的图象上位于直线下方的点,过点分别作轴、轴的垂线,垂足分别为点,交直线于点,若,则的值为__________.
11、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.
12、(4分)如果一次函数y=kx+2的函数值y随着x的值增大而减小,那么k的取值范围是_____.
13、(4分)函数y=中,自变量x的取值范围是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:
(1)乙工程队每天修公路多少米?
(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.
(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?
15、(8分)先化简,再求值: ,其中.
16、(8分)(1)解方程:x2+3x-4=0 (2) 计算:
17、(10分)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.
求证:四边形AGCH是平行四边形.
18、(10分)如图1.在边长为10的正方形中,点在边上移动(点不与点,重合),的垂直平分线分别交,于点,,将正方形沿所在直线折叠,则点的对应点为点,点落在点处,与交于点,
(1)若,求的长;
(2)随着点在边上位置的变化,的度数是否发生变化?若变化,请说明理由;若不变,请求出的度数;
(3)随着点在边上位置的变化,点在边上位置也发生变化,若点恰好为的中点(如图2),求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中,已知一次函数y=x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2(填“>”,“<”或“=”).
20、(4分)正n边形的一个外角的度数为60°,则n的值为 .
21、(4分)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
22、(4分)函数的自变量的取值范围是 .
23、(4分)某商场品牌手机经过5、6月份连续两次降价,每部售价由5000元降到4050元,设平均每次降价的百分率为x,根据题意可列方程:_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.
25、(10分)已知一次函数的图象经过(2,5)和(﹣1,﹣1)两点.
(1)求这个一次函数的解析式;
(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时,y如何变化?
26、(12分)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.
(1)补充完成下面的成绩统计分析表:
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由一次函数y2=k2x+b2与y2=k2x+b2的图象互相平行,得出k2=k2,设k2=k2=a,将(m,-2)、(0,0)代入y2=ax+b2,得到am=-2;将(m,2)、(0,n)、(2,7)代入y2=ax+b2,解方程组即可求出m的值.
【详解】
解:∵一次函数y2=k2x+b2与y2=k2x+b2的图象互相平行,
∴k2=k2,
设k2=k2=a,则y2=ax+b2,y2=ax+b2.
将(m,-2)、(0,0)代入y2=ax+b2,得am=-2①;
将(m,2)、(0,n)、(2,7)代入y2=ax+b2,
得am+n=2②,2a+n=7③,
①代入②,得n=3,
把n=3代入③,得a=2,
把a=2代入①,得m=-2.
故选:A.
本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.即若直线y2=k2x+b2与直线y2=k2x+b2平行,那么k2=k2.也考查了一次函数图象上点的坐标特征.难度适中.
2、C
【解析】
解答本题的关键是记住多边形内角和公式为(n-2)×180°,任何多边形的外角和是360度.外角和与多边形的边数无关.
【详解】
多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据内角和比他的外角和的3倍少180°列方程求解.
设所求n边形边数为n,
则(n-2)•180°=360°×3-180°,
解得n=7,
故选C.
本题主要考查了多边形的内角和与外角和,解答本题的关键是记住多边形内角和公式为(n-2)×180°.
3、A
【解析】
如图,取AB,CD的中点K,G,连接KG,BD交于点O,由题意知,点Q运动的路线是线段OG,因为DO=OB,所以DG=GC,所以OG=BC=×4=2,所以点Q移动路线的最大值是2,故选A.
4、A
【解析】
分情况讨论:和时,根据图像的性质,即可判定.
【详解】
当时,函数的图像位于第一、三象限,函数的图像第一、三、四象限;
当时,函数的图像位于第二、四象限,函数的图像第二、三、四象限;
故答案为A.
此题主要考查一次函数和反比例函数的性质,熟练掌握,即可解题.
5、A
【解析】
根据题意得:△OAB∽△OAB,然后由相似三角形的对应边成比例,求得答案.
【详解】
根据题意得:△O AB∽△OAB,
∵O(0,0),A(2,1),B(1,3),B点的坐标为(2,6),A(4,2)
∴横坐标和纵坐标都乘以2.
故选A.
此题考查坐标与图形性质,相似三角形的性质,解题关键在于利用相似三角形的对应边成比例
6、C
【解析】
根据在每段中,离家的距离随时间的变化情况即可进行判断.
【详解】
图象应分三个阶段,第一阶段:慢步到离家较远的绿岛公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿太极拳,这一阶段离家的距离不随时间的变化而改变。故D错误;第三阶段:搭公交车回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.
故选:C.
本题考查函数图象,解题的关键是由题意将图象分为三个阶段进行求解.
7、D
【解析】
根据三点共线可得,再根据等腰直角三角板的性质得,即可求出旋转角度的大小.
【详解】
∵三点共线
∴
∵这是一块等腰直角的三角板
∴
∴
故旋转角度的大小为135°
故答案为:D.
本题考查了三角板的旋转问题,掌握等腰直角三角板的性质、旋转的性质是解题的关键.
8、B
【解析】
如图所示:
∵菱形的周长为20cm,
∴菱形的边长为5cm,
∵两邻角之比为1:2,
∴较小角为60°,
∴∠ABO=30°,AB=5cm,
∵最长边为BD,BO=AB⋅cs∠ABO=5×= (cm),
∴BD=2BO= (cm).
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.
【详解】
解:∵b=+﹣2,
∴
∴1-2a=0,
解得:a=,则b=-2,
故ab=()-2=1.
故答案为1.
此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a的值是解题关键.
10、-3
【解析】
首先设PN=x,PM=y,由已知条件得出EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5),通过等量转换,列出关系式,求出,又因为反比例函数在第二象限,进而得解.
【详解】
过点F作FF′⊥OA与F′,过点E作EE′⊥OB与E′,如图所示,
设PN=x,PM=y,
由已知条件,得
EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5)
∴OA=OB=5
∴∠OAB=∠OBA=45°
∴FF′=AF′=y,EE′=BE′=x,
∴AF=,BE=
又∵
∴
∴
又∵反比例函数在第二象限,
∴.
此题主要考查一次函数和反比例函数的综合应用,熟练掌握,即可解题.
11、
【解析】
根据锐角三角函数的定义以及正方形的性质即可求出答案.
【详解】
解:设正方形的边长为x,
∴CE=ED=x,
∴AE=AC-CE=12-x,
在Rt△ABC中,
,
在Rt△ADE中,
,
∴,
∴解得:x=,
故答案为:.
本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.
12、k<1.
【解析】
根据一次函数的性质解答即可.
【详解】
∵一次函数y=kx+2,函数值y随x的值增大而减小,
∴k<1.
故答案为:k<1.
本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠1),当k>1时,y随x的增大而增大;当k<1时,y随x的增大而减小.
13、x≠1
【解析】
根据分母不能为零,可得答案.
【详解】
解:由题意,得x-1≠0,
解得x≠1,
故答案为:x≠1.
本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)120米(2)y乙=120x﹣1,y甲=60x(3)2
【解析】
解:(1)由图得:720÷(2﹣3)=120(米),
答:乙工程队每天修公路120米.
(2)设y乙=kx+b,则,解得:.∴y乙=120x﹣1.
当x=6时,y乙=1.
设y甲=kx,则1=6k,k=60,∴y甲=60x.
(3)当x=15时,y甲=200,∴该公路总长为:720+200=1620(米).
设需x天完成,由题意得:
(120+60)x=1620,解得:x=2.
答:该项工程由甲、乙两工程队一直合作施工,需2天完成
(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数.
(2)根据函数的图象运用待定系数法即可求出y与x之间的函数关系式.
(3)先求出该公路总长,再设出需要x天完成,根据题意列出方程组,求出x,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.
15、,1
【解析】
先根据完全平方公式、平方差公式和单项式乘多项式法则化简原式,再将x的值代入计算可得.
【详解】
解:
当x=-2时,原式=24-1=1.
本题主要考查整式的混合运算-化简求值,解题的关键是掌握完全平方公式、平方差公式和单项式乘多项式法则.
16、(1) (2)
【解析】
(1)解一元二次方程,将等式左边因式分解,转化成两个一元一次方程,求解即可. (2) 首先把特殊角的三角函数值代入,然后进行二次根式的运算即可.
【详解】
解:(1)原方程变形得(x-1)(x+4)=0
解得x1=1,x2=-4
经验:x1=1,x2=-4是原方程的解.
(2)原式=×××=
本题是计算题第(1)考查解二元一次方程-因式分解.(2)特殊三角函数的值.本题较基础,熟练掌握运算的方法即可求解.
17、证明见解析.
【解析】
法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;
法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.
证明:在□ABCD中,AD∥BC,AB∥CD,
∵CF⊥AD,∴CF⊥BC,
∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,
∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,
∴∠AGB=∠DHC,
∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,
∴AG=CH,
∴四边形AGCH是平行四边形;
法2:连接AC,与BD相交于点O,
在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,
∴∠ABG=∠CDH,
∵CF⊥AD,AE⊥BC,
∴∠AEB=∠CFD=90°,
∴∠BAG=∠DCH,
∴△ABG≌CDH,
∴BG=DH,
∴BO﹣BG=DO﹣DH,
∴OG=OH,
∴四边形AGCH是平行四边形.
“点睛”此题考查了平行四边形的判定与性质,熟练掌握平式子变形的判定与性质是解本题的关键.
18、(1);(2)不变,45°;(3) .
【解析】
(1)由翻折可知:EB=EM,设EB=EM=x,在Rt△AEM中,根据EM2=AM2+AE2,构建方程即可解决问题.
(2)如图1-1中,作BH⊥MN于H.利用全等三角形的性质证明∠ABM=∠MBH,∠CBP=∠HBP,即可解决问题.
(3)如图2中,作FG⊥AB于G.则四边形BCFG是矩形,FG=BC,CF=BG.设AM=x,在Rt△DPM中,利用勾股定理构建方程求出x,再在Rt△AEM中,利用勾股定理求出BE,EM,AE,再证明AM=EG即可解决问题.
【详解】
(1)如图1中,
∵四边形ABCD是正方形,
∴∠A=90°,AB=AD=10,
由翻折可知:EB=EM,设EB=EM=x,
在Rt△AEM中,∵EM2=AM2+AE2,
∴x2=42+(10-x)2,
∴x=.
∴BE=.
(2)如图1-1中,作BH⊥MN于H.
∵EB=EM,
∴∠EBM=∠EMB,
∵∠EMN=∠EBC=90°,
∴∠NMB=∠MBC,
∵AD∥BC,
∴∠AMB=∠MBC,
∴∠AMB=∠BMN,
∵BA⊥MA,BH⊥MN,
∴BA=BH,
∵∠A=∠BHM=90°,BM=BM,BA=BH,
∴Rt△BAM≌△BHM(HL),
∴∠ABM=∠MBH,
同法可证:∠CBP=∠HBP,
∵∠ABC=90°,
∴∠MBP=∠MBH+∠PBH=∠ABH+∠CBH=∠ABC=45°.
∴∠PBM=45°.
(3)如图2中,作FG⊥AB于G.则四边形BCFG是矩形,FG=BC,CF=BG.设AM=x,
∵PC=PD=5,
∴PM+x=5,DM=10-x,
在Rt△PDM中,(x+5)2=(10-x)2+25,
∴x=,
∴AM=,
设EB=EM=m,
在Rt△AEM中,则有m2=(10-m)2+()2,
∴m= ,
∴AE=10-,
∵AM⊥EF,
∴∠ABM+∠GEF=90°,∠GEF+∠EFG=90°,
∴∠ABM=∠EFG,
∵FG=BC=AB,∠A=∠FGE=90°,
∴△BAM≌△FGE(AAS),
∴EG=AM= ,
∴CF=BG=AB-AE-EG=10- .
此题考查四边形综合题、正方形的性质、全等三角形的判定和性质、勾股定理,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据一次函数的性质,k>0时,y随x的增大而增大;k<0时,y随x的增大而减小,从而得出答案.
【详解】
一次函数y=x+1,,y随x的增大而减小
∵x1<x2
∴y1>y2
故答案为:>
本题考查了一次函数的增减性,熟练掌握相关知识点是解题关键.
20、1
【解析】
解:∵正n边形的一个外角的度数为10°,
∴n=310÷10=1.
故答案为:1.
21、1或1或1
【解析】
本题根据题意分三种情况进行分类求解,结合三角函数,等边三角形的性质即可解题.
【详解】
试题分析:当∠APB=90°时(如图1),
∵AO=BO,
∴PO=BO,
∵∠AOC=60°,
∴∠BOP=60°,
∴△BOP为等边三角形,
∵AB=BC=4,
∴;
当∠ABP=90°时(如图1),
∵∠AOC=∠BOP=60°,
∴∠BPO=30°,
∴,
在直角三角形ABP中,
,
如图3,∵AO=BO,∠APB=90°,
∴PO=AO,
∵∠AOC=60°,
∴△AOP为等边三角形,
∴AP=AO=1,
故答案为或或1.
考点:勾股定理.
22、x>1
【解析】
解:依题意可得,解得,所以函数的自变量的取值范围是
23、5000(1﹣x)2=1
【解析】
根据现在售价5000元月平均下降率现在价格1元,即可列出方程.
【详解】
解:设平均每次降价的百分率为x,根据题意可列方程:
5000(1﹣x)2=1.
故答案为:5000(1﹣x)2=1.
此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.
二、解答题(本大题共3个小题,共30分)
24、(1)△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)详见解析
【解析】
(1)因为ABCD是平行四边形,AD∥BC,因此∠ADE=∠CBF,又知DE=BF,D=BC那么构成了三角形ADE和CBF全等的条件(SAS)因此△AED≌△CFB.同理可得出△ABE≌△CDF,△ABD≌△CDB.
(2)要证明四边形AGCH是个平行四边形,已知的条件有AB∥CD,只要证得AG∥CH即可得出上述结论.那么就需要证明∠AEB=∠DFC,也就是证明△ABE≌△CDF,根据AB∥CD.∴∠ABD=∠CDB.这两个三角形中已知的条件就有AB=CD,BE=DF(BE=DF+EF=DE+EF=DF),又由上面得出的对应角相等,那么两三角形就全等了(SAS).
【详解】
(1)解:△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;
(2)证明:在△ADE和△CBF中,AD=CB,∠ADE=∠CBF,DE=BF,
∴△ADE≌△CBF,
∴∠AED=∠CFB.
∵∠FEG=∠AED=∠CFB=∠EFH,
∴AG‖HC,而且,AH‖GC,
∴四边形AGCH是平行四边形
本题考查了全等三角形的判定,平行四边形的性质和判定等知识点,本题中公共全等三角形来得出线段和角相等是解题的关键.
25、y=2x+1;y随着x的增大而增大.
【解析】
(1)设一次函数解析式为y=kx+b,将已知两点坐标代入求出k与b的值,即可确定出解析式;
(2)做出函数图象,如图所示,根据增减性即可得到结果.
【详解】
解:(1)设一次函数解析式为y=kx+b,
将(2,5)与(﹣1,﹣1)代入得,
解得:k=2,b=1,
则一次函数解析式为y=2x+1;
(2)如图所示,y随着x的增大而增大.
此题考查了待定系数法求一次函数解析式,以及一次函数的图象,熟练掌握待定系数法是解本题的关键.
26、(1)6;7.1;(2)甲;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组
【解析】
(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可:
∵甲组的成绩为:3,6,6,6,6,6,7,8,9,10,∴甲组中位数为6分
∵乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(分)
(2)根据两组的中位数,观察表格,成绩为7分处于中游略偏上,应为甲组的学生.
(3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组
解:(1)填表如下:
(2)甲.
(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组
故答案为(1)6;7.1;(2)甲
题号
一
二
三
四
五
总分
得分
组别
平均分
中位数
方差
合格率
优秀率
甲组
6.7
3.41
90%
20%
乙组
7.5
1.69
80%
10%
组别
平均分
中位数
方差
合格率
优秀率
甲组
6.7
6
3.41
90%
20%
乙组
7.1
7.5
1.69
80%
10%
2024-2025学年湖南省衡阳市九年级数学第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年湖南省衡阳市九年级数学第一学期开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省天门市六校数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年湖北省天门市六校数学九年级第一学期开学调研模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024-2025学年福建省平和县九年级数学第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年福建省平和县九年级数学第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。