四川省成都南开为明学校2025届数学九上开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个多边形的内角和是其外角和的3倍,则这个多边形的边数是( )
A.7B.8C.6D.5
2、(4分)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )
A.B.C.D.
3、(4分)一次函数y=kx+b(k<0,b>0)的图象可能是( )
A. B. C. D.
4、(4分)在下列汽车标志中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
5、(4分)如图,点O为四边形ABCD内任意一点,E,F,G,H分别为OA,OB,OC,OD的中点,则四边形EFGH的周长为( )
A.9B.12C.18D.不能确定
6、(4分)关于的一元二次方程有两个实数根,则的取值范围是( )
A.B.C.且D.且
7、(4分)在平面直角坐标系中,作点A(3,4)关于x轴对称的点A′,再将点A′向左平移6个单位,得到点B,则点B的坐标为( )
A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)
8、(4分)下列各式中,能与合并的二次根式是 ( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.
10、(4分)若a+b=4,a﹣b=1,则(a+2)2﹣(b﹣2)2的值为_____.
11、(4分)一次函数y=-x+4的图像是由正比例函数 ____________ 的图像向 ___ (填“上”或 “下”)平移 __ 个单位长度得到的一条直线.
12、(4分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是_____.
13、(4分)已知y+1与x成正比例,则y是x的_____函数.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在矩形ABCD中,AB=4,AD=5,E为射线BC上一点,DF⊥AE于F,连结DE.
(1)当E在线段BC上时
①若DE=5,求BE的长;
②若CE=EF,求证:AD=AE;
(2)连结BF,在点E的运动过程中:
①当△ABF是以AB为底的等腰三角形时,求BE的长;
②记△ADF的面积为S1,记△DCE的面积为S2,当BF∥DE时,请直接写出S1:S2的值.
15、(8分)已知:如图,在等边三角形中,点,分别在边和上,且.以为边作等边三角形,连接,,.
(1)你能在图中找到一对全等三角形吗?请说明理由;
(2)图中哪个三角形可以通过旋转得到另一个三角形?请说明是怎样旋转的.
16、(8分)如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.
(1)求线段DE的长;
(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;
(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.
17、(10分)计算
(1)
(2)
18、(10分)已知:如图,在四边形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.
(1)求证:四边形CDEF是平行四边形;
(2)填空:
①当四边形ABCD满足条件 时(仅需一个条件),四边形CDEF是矩形;
②当四边形ABCD满足条件 时(仅需一个条件),四边形CDEF是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若式子 有意义,则x的取值范围为___________.
20、(4分)在一个不透明的盒子中装有n个小球,它们除颜色不同外,其余都相同,其中有4个是白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,大量重复上述实验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是___.
21、(4分)如图,菱形ABCD中,AC、BD交于点O,DE⊥BC于点E,连接OE,若∠ABC=120°,则∠OED=______.
22、(4分)直线与轴、轴的交点分别为、则这条直线的解析式为__________.
23、(4分)菱形的周长为12,它的一个内角为60°,则菱形的较长的对角线长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成. 将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,. 若, 则正方形EFGH的面积为_______.
25、(10分)某服装店用 6000 元购进一批衬衫,以 60 元/件的价格出售,很快售完,然后又用 13500元购进同款衬衫,购进数量是第一次的 2 倍,购进的单价比上一次每件多 5 元,服装店 仍按原售价 60 元/件出售,并且全部售完.
(1)该服装店第一次购进衬衫多少件?
(2)将该服装店两次购进衬衫看作一笔生意,那么这笔生意是盈利还是亏损?求出盈利(或 亏损)多少元?
26、(12分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:
(1)根据上图填写下表:
(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据多边形的内角和公式及外角的特征计算.
【详解】
解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选:B.
本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.
2、B
【解析】
按照题目要求弄清剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,可得正确答案;或动手操作,同样可得正确答案.
【详解】
解:由题意知,剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,故选B.
本题考查了图形的折叠和动手操作能力,对此类问题,在不容易想象的情况下,动手操作不失为一种解决问题的有效方法.
3、C
【解析】
根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.
【详解】
∵k<0,
∴一次函数y=kx+b的图象经过第二、四象限.
又∵b>0时,
∴一次函数y=kx+b的图象与y轴交与正半轴.
综上所述,该一次函数图象经过第一象限.
故答案为:C.
考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
4、A
【解析】
根据中心对称图形和轴对称图形的概念逐一进行分析即可.
【详解】
A、是中心对称图形,也是轴对称图形,故符合题意;
B、不是中心对称图形,是轴对称图形,故不符合题意;
C、不是中心对称图形,是轴对称图形,故不符合题意;
D、不是中心对称图形,是轴对称图形,故不符合题意,
故选A.
本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
5、C
【解析】
由三角形中位线定理可得EF=AB,FG=BC,HG=DC,EH=AD,再根据题目给出的已知数据即可求出四边形EFGH的周长.
【详解】
解:∵E,F分别为OA,OB的中点,
∴EF是△AOB的中位线,
∴EF=AB=3,
同理可得:FG=BC=5,HG=DC=6,EH=AD=4,
∴四边形EFGH的周长为=3+5+6+4=18,
故选C.
本题考查了中点四边形的性质和三角形中位线定理的运用,解题的关键是根据三角形中位线定理得到四边形EFGH各边是原四边形ABCD的各边的一半.
6、C
【解析】
利用一元二次方程的定义和判别式的意义得到k+1≠0且△=(-2)2-4(k+1)×(-1)≥0,然后求出两不等式的公共部分即可.
【详解】
解:根据题意得k+1≠0且△=(-2)2-4(k+1)×(-1)≥0,
解得:且.
故选:C.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
7、D
【解析】
根据直角坐标系坐标特点及平移性质即可求解.
【详解】
点A(3,4)关于x轴对称的点A′坐标为(3,-4)
再将点A′向左平移6个单位得到点B为(-3,-4)
故选D.
此题主要考查直角坐标系的坐标变换,解题的关键是熟知直角坐标系的特点.
8、B
【解析】
先化成最简二次根式,再判断即可.
【详解】
解:A、不能与合并,故本选项不符合题意;
B、=,能与合并,故本选项符合题意;
C、=,不能与合并,故本选项不符合题意;
D、=4,不能与合并,故本选项不符合题意.
本题考查了同类二次根式和二次根式的性质等知识点,能理解同类二次根式的定义是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.
【详解】
设BG=x,
则BE=x,
∵BE=BC,
∴BC=x,
则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.
故答案为:.
本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.
10、1
【解析】
先利用平方差公式:化简所求式子,再将已知式子的值代入求解即可.
【详解】
将代入得:原式
故答案为:1.
本题考查了利用平方差公式进行化简求值,熟记公式是解题关键.另一个重要公式是完全平方公式:,这是常考知识点,需重点掌握.
11、y=-x, 上, 4
【解析】
分析:根据函数图象平移的规则“上加下减”,即可得出将y=-x的函数图象向上平移4个单位即可得到函数y=-x+4的图象,此题得解.
详解:根据图形平移的规则“上加下减”,即可得出:
将y=−x的函数图象向上平移4个单位即可得到函数y=−x+4的图象.
故答案为:y=−x;上;4.
点睛:本题主要考查了一次函数图像与几何变换.关键在于牢记函数图像的平移规则.
12、2.1.
【解析】
连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接CP.
∵∠ACB=90°,AC=3,BC=1,
∴AB=,
∵PE⊥AC,PF⊥BC,∠ACB=90°,
∴四边形CFPE是矩形,
∴EF=CP,
由垂线段最短可得CP⊥AB时,线段EF的值最小,
此时,S△ABC=BC•AC=AB•CP,
即×1×3=×5•CP,
解得CP=2.1.
∴EF的最小值为2.1.
故答案为2.1.
13、一次
【解析】
将y+1看做一个整体,根据正比例函数的定义列出解析式解答即可.
【详解】
y+1与x成正比例,
则y+1=kx,
即y=kx-1,
符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.
三、解答题(本大题共5个小题,共48分)
14、(1)①BE=2;②证明见解析;(2)①BE=2;②S1:S2=1
【解析】
【分析】(1)①在矩形 ABCD 中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,由勾股定理求得CE的长,即可求得BE的长;
②证明△CED≌△DEF,可得∠CED=∠FED,从而可得∠ADE=∠AED,即可得到AD=AE;
(2)①分两种情况点 E 在线段 BC 上、点 E 在 BC 延长线上两种情况分别讨论即可得;
②S1:S2=1,当 BF//DE 时,延长 BF 交 AD 于 G,由已知可得到四边形 BEDG 是平行四边形,继而可得S△DEF=S平行四边形 BEDG,S △BEF+S△ DFG= S平行四边形 BEDG,S△ABG=S△CDE,根据面积的知差即可求得结论.
【详解】(1)①在矩形 ABCD 中,∠B=∠DCE=90°,
BC=AD=5,DC=AB=4,
∵DE=5,
∴CE==3,
∴BE=BC-CE=5-3=2;
②在矩形 ABCD 中,∠DCE=90°,AD//BC,
∴∠ADE=∠DEC,∠DCE=∠DFE,
∵CE=EF,DE=DE,
∴△CED≌△DEF(HL),
∴∠CED=∠FED,
∴∠ADE=∠AED,
∴AD=AE;
(2)①当点 E 在线段 BC 上时,AF=BF,如图所示:
∴∠ABF=∠BAF,
∵∠ABF+∠EBF=90°,
∠BAF+∠BEF=90°,
∴∠EBF=∠BEF,
∴EF=BF ,∴AF=EF,
∵DF⊥AE,
∴DE=AD=5,
在矩形 ABCD 中,CD=AB=4,∠DCE=90°,
∴CE=3,
∴BE=5-3=2;
当点 E 在 BC 延长线上时,AF=BF,如图所示,
同理可证 AF=EF,
∵DF⊥AE,
∴DE=AD=5,
在矩形 ABCD 中,CD=AB=4,∠DCE=90°,
∴CE=3,
∴BE=5+3=8,
综上所述,可知BE=2或8;
②S1:S2=1,解答参考如下:
当 BF//DE 时,延长 BF 交 AD 于 G,
在矩形 ABCD 中,AD//BC,AD=BC,AB=CD,
∠BAG=∠DCE=90°,
∵BF//DE,
∴四边形 BEDG 是平行四边形,
∴BE=DG,S△DEF=S平行四边形 BEDG,
∴AG=CE,S △BEF+S△ DFG= S平行四边形 BEDG,
∴△ABG≌△CDE,
∴S△ABG=S△CDE,
∵S △ABE= S平行四边形 BEDG,
∴S△ABE=S△BEF+S△DFG,
∴S△ABF=S△DFG,
∴S△ABF+S△AFG=S△DFG+S△AFG即 S△ABG=S△ADF,
∴S△CDE=S△ADF,即 S1:S2=1.
【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等,综合性较强,有一定的难度,熟练掌握和灵活用相关知识是解题的关键.
15、(1),见详解;(2)绕点顺时针旋转得到,见详解
【解析】
(1)根据三角形全等的判定即可得到答案;
(2)在全等的三角形中根据旋转的定义即可得到答案.
【详解】
解:.
证明:,为等边三角形
,
在和中
(2)绕点顺时针旋转得到.
本题考查旋转的性质,等边三角形的性质,三角形全等的判定,认真观察图形找到全等的三角形是解决问题的关键.
16、(1)1;(2)(,);(3)6+﹣3或6++3或2﹣2或8.
【解析】
(1)想办法证明DE⊥AB,利用角平分线的性质定理证明DE=OD即可解决问题;
(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.
(3)分三种情形:①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形.③如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.分别解直角三角形即可解决问题.
【详解】
解:(1)∵直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,
∴A(0,3),B(,0),
∴OA=3,OB=,
∴tan∠ABO==,
∴∠ABO=60°,
∵BD平分∠ABO,
∴∠DBO=30°,
∴OD=OB•tan30°=1,DB=2OD=2,
∴AD=DB=2,
∴AE=EB,
∴DE⊥AB,∵DO⊥OB,DB平分∠ABO,
∴DE=DO=1.
(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.
∵E′(,),D′(2,﹣1),
∴直线D′E′的解析式为,直线BC的解析式为y=x﹣3,
由,解得,,
∴F .
把点F向上平移3个单位,向右平移个单位得到点G,
∴G().
(3)以点A为圆心,以AE为半径作⊙A,则DE为⊙A的切线.
①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.
∵CM=CN,∠MCN=30°,
∴∠CNM=∠CMN=75°,
∴∠ANE=∠CNM=75°,
∴∠EAN=15°,
∴∠PAN=∠ANP=15°,
∴∠EPN=30°,
∴PN=AP=2x,PE=x,
∴2x+x=,
∴x=2﹣3,
∴AN=,
∴CM=CN==.
②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形,PB=AE=,
在Rt△PBM中,∠PBM=30°,
∴BM=2,
∴CM=BC﹣BM=2﹣2.
③如图2﹣1中.CM=CN时,同法可得CM=.
④如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.
∵CD=6+2=8,∠DCP=30°,
∴PC=PM=4,
∴CM=8
综上所述,满足条件的CM的值为或或2﹣2或8.
本题考查一次函数的应用、锐角三角函数、勾股定理、解直角三角形、等腰三角形的判定和性质、轴对称最短问题等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
17、.(1) ; (2)
【解析】
(1)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可;
(2)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可.
【详解】
解:(1)原式=;
(2)原式=..
本题考查二次根式的乘除运算,解题的关键是熟练运用二次根式的性质和运算法则.
18、(1)详见解析;(2)①AD=BC;②AD⊥BC.
【解析】
(1)利用两组对边分别平行的四边形是平行四边形,可得四边形AECD和四边形BFDC都是平行四边形,再由一组对边平行且相等的四边形是平行四边形可得CDEF是平行四边形.(2)①当AD=BC时,四边形EFCD是矩形.理由是:对角线相等的平行四边形是矩形;②当AD⊥BC时,四边形EFCD是菱形.理由是:对角线互相垂直的平行四边形是菱形.
【详解】
解:
(1)证明:∵AB∥CD,CE∥AD,DF∥BC,
∴四边形AECD和四边形BFDC都是平行四边形,
∴AE=CD=FB,
∵AB=3CD,
∴EF=CD,
∴四边形CDEF是平行四边形.
(2)解:①当AD=BC时,四边形EFCD是矩形.
理由:∵四边形AECD和四边形BFDC都是平行四边形,
∴EC=AD,DF=BC,
∴EC=DF,
∵四边形EFDC是平行四边形,
∴四边形EFDC是矩形.
②当AD⊥BC时,四边形EFCD是菱形.
理由:∵AD∥CE,DF∥CB,AD⊥BC,
∴DF⊥EC,
∵四边形EFCD是平行四边形,
∴四边形EFCD是菱形.
故答案为AD=BC,AD⊥BC.
本题考查了平行四边形的性质和判定,矩形的判定及菱形的判定.熟练掌握相关定理是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥5
【解析】
根据二次根式的性质,即可求解.
【详解】
因为式子有意义,
可得:x-5≥1,
解得:x≥5,
故选A.
主要考查了二次根式的意义.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于1.
20、10
【解析】
利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【详解】
∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,
∴=0.4,
解得:n=10.
故答案为:10.
此题考查利用频率估计概率,掌握运算法则是解题关键
21、30°
【解析】
根据直角三角形的斜边中线性质可得OE=BE=OD,根据菱形性质可得∠DBE= ∠ABC=60°,从而得到∠OEB度数,再依据∠OED=90°-∠OEB即可.
【详解】
∵四边形ABCD是菱形,
∴O为BD中点,∠DBE=∠ABC=60°.
∵DE⊥BC,
∴在Rt△BDE中,OE=BE=OD,
∴∠OEB=∠OBE=60°.
∴∠OED=90°-60°=30°.
故答案是:30°
考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.
22、y=1x+1.
【解析】
把(-1,0)、(0,1)代入y=kx+b得到 ,然后解方程组可.
【详解】
解:根据题意得
,
解得,
所以直线的解析式为y=1x+1.
故答案为y=1x+1.
本题考查了待定系数法求一次函数的解析式:设一次函数的解析式为y=kx+b(k、b为常数,k≠0),然后把函数图象上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k、b,从而得到一次函数的解析式.
23、3
【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,BD=2OB,菱形的对角线平分一组对角线可得∠ABO=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得AO=AB,再利用勾股定理列式求出OB,即可得解.
【详解】
解:如图所示:
∵菱形ABCD的周长为12,
∴AB=3,AC⊥BD,BD=2OB,
∵∠ABC=60°,
∴∠ABO=∠ABC=30°,
∴AO=AB=×3=,
由勾股定理得,OB===,
∴BD=2OB=3.
故答案为:3.
本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.
二、解答题(本大题共3个小题,共30分)
24、1
【解析】
设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,构建方程组,利用整体的思想思考问题,求出x+4y即可.
【详解】
解:设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,
∵正方形MNKT,正方形EFGH,正方形ABCD的面积分别为S1,S2,S3,S1+S2+S3=18,
∴得出S1=x,S2=4y+x,S3=8y+x,
∴S1+S2+S3=3x+12y=18,故3x+12y=18,
x+4y=1,
所以S2=x+4y=1,即正方形EFGH的面积为1.
故答案为1
本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.
25、(1)该服装店第一次购进衬衫 150 件.(2)这笔生意共盈利 7500 元.
【解析】
分析:(1)设该服装店第一次购进衬衫x件,根据题目中的“第二次每件进价比第一次多5元”可得出相等关系,列方程求解即可;
(2)用第一次的利润+第二次的利润,和是正数表示盈利.
详解:(1)设该服装店第一次购进衬衫x件.由题意得:
解得:x=150,经检验:x=150 是原方程的解.
答:该服装店第一次购进衬衫150 件.
(2)第一次购进的单价为 6000÷150=40(元/件)
第二次的购进数量为:150×2=300(件)
第二次购进的单价为:40+5=45(元/件)
这笔生意的利润为:(60-40)×150+(60-45)×300=7500(元)
答:这笔生意共盈利 7500 元.
点睛:本题考查的是分式方程的应用,正确分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
26、
【解析】
分析:
(1)根据“中位数”、“众数”的定义及“方差”的计算公式结合统计图中的数据进行分析计算即可;
(2)按照题中要求,分别根据平均数、中位数、众数、方差的意义进行说明即可.
详解:
甲的众数为:,
方差为:
,
乙的中位数是:8;
故答案为;
从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;
从中位数看,甲班的中位数大,所以甲班的成绩较好;
从众数看,乙班的众数大,所以乙班的成绩较好;
从方差看,甲班的方差小,所以甲班的成绩更稳定.
点睛:理解“平均数、中位数、众数、方差的意义和计算方法”是正确解答本题的关键.
题号
一
二
三
四
五
总分
得分
平均数
中位数
众数
方差
甲班
8.5
8.5
乙班
8.5
10
1.6
四川省成都市泡桐树中学2024年九上数学开学调研模拟试题【含答案】: 这是一份四川省成都市泡桐树中学2024年九上数学开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届四川省成都市外国语学校九上数学开学综合测试模拟试题【含答案】: 这是一份2025届四川省成都市外国语学校九上数学开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年四川省成都市北大附中成都为明学校九上数学开学经典模拟试题【含答案】: 这是一份2024年四川省成都市北大附中成都为明学校九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。