|试卷下载
终身会员
搜索
    上传资料 赚现金
    上海市宝山区刘行新华实验学校2024年数学九年级第一学期开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    上海市宝山区刘行新华实验学校2024年数学九年级第一学期开学检测模拟试题【含答案】01
    上海市宝山区刘行新华实验学校2024年数学九年级第一学期开学检测模拟试题【含答案】02
    上海市宝山区刘行新华实验学校2024年数学九年级第一学期开学检测模拟试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海市宝山区刘行新华实验学校2024年数学九年级第一学期开学检测模拟试题【含答案】

    展开
    这是一份上海市宝山区刘行新华实验学校2024年数学九年级第一学期开学检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)正比例函数的图象经过点,,当时,,则的取值范围是( )
    A.B.C.D.
    2、(4分)正方形的一条对角线之长为3,则此正方形的边长是( )
    A.B.3C.D.
    3、(4分)在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是( )
    A.测量对角线是否平分B.测量两组对边是否分别相等
    C.测量其中三个角是否是直角D.测量对角线是否相等
    4、(4分)下列不能判断是正方形的有( )
    A.对角线互相垂直的矩形B.对角线相等的矩形
    C.对角线互相垂直且相等的平行四边形D.对角线相等的菱形
    5、(4分)如图,在□ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于( )
    A.2B.3C.4D.5
    6、(4分)下列条件中,不能判定四边形ABCD是平行四边形的是( )
    A.AB∥CD,AD=BCB.AB∥CD,∠B=∠D
    C.AB=CD,AD=BCD.AB∥CD,AB=CD
    7、(4分)如图,已知在平行四边形中,是对角线上的两点,则以下条件不能判断四边形是平行四边形的是( )
    A.
    B.
    C.
    D.
    8、(4分)下列调查最适合用查阅资料的方法收集数据的是( )
    A.班级推选班长B.本校学生的到时间
    C.2014世界杯中,谁的进球最多D.本班同学最喜爱的明星
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.
    10、(4分)在四边形中,给出下列条件:① ② ③ ④
    其中能判定四边形是平行四边形的组合是________或 ________或_________或_________.
    11、(4分)一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为______.
    12、(4分)评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试90分,作业95分,课堂参与92分,则他的数学期末成绩为_____.
    13、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在矩形ABCD中,点E为AD上一点,连接BE、CE, .
    (1)如图1,若 ;
    (2)如图2,点P是EC的中点,连接BP并延长交CD于点F,H为AD上一点,连接HF,且 ,求证:.
    15、(8分)如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.
    (1)若AB=2,求四边形ABFG的面积;
    (2)求证:BF=AE+FG.
    16、(8分)如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.
    (1)如图,当点E在线段BC上时,∠BDF=α.
    ①按要求补全图形;
    ②∠EBF=______________(用含α的式子表示);
    ③判断线段 BF,CF,DF之间的数量关系,并证明.
    (2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.
    17、(10分)如图,在矩形纸片中,,.将矩形纸片折叠,使点与点重合,求折痕的长.
    18、(10分)一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,-2),
    (1)求一次函数的表达式;
    (2)若点C在y轴上,且S△ABC=2S△AOB,直接写出点C的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知点A(),B()是一次函数图象上的两点,当时,__.(填“>”、“=”或“<”)
    20、(4分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
    21、(4分)如图,在四边形ABCD中,分别为线段上的动点(含端点,但点M不与点B重合),E、F分别为的中点,若,则EF长度的最大值为______.
    22、(4分)如图,在矩形ABCD中,AB=6,对角线AC、BD相交于点O,AE垂直平分BO于点E,则AD的长为_____.
    23、(4分)矩形 内一点 到顶点 ,, 的长分别是 ,,,则 ________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,已知点和点.
    (1)求直线所对应的函数表达式;
    (2)设直线与直线相交于点,求的面积.
    25、(10分)如图,在△ABC中,BD、CE分别为AC、AB边上的中线,BD、CE交于点H,点G、F分别为HC、HB的中点,连接AH、DE、EF、FG、GD,其中HA=BC.
    (1)证明:四边形DEFG为菱形;
    (2)猜想当AC、AB满足怎样的数量关系时,四边形DEFG为正方形,并说明理由.
    26、(12分)已知:如图在菱形ABCD中,AB=4,∠DAB=30°,点E是AD的中点,点M是的一个动点(不与点A重合),连接ME并廷长交CD的延长线于点N连接MD,AN.
    (1)求证:四边形AMDN是平行四边形;(2)当AM为何值时,四边形AMDN是矩形并说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.
    【详解】
    解:由题意可知:在正比例函数y=(1-2m)x中,y随x的增大而减小
    由一次函数性质可知应有:1-2m<0,即-2m<-1,
    解得:
    故选:C
    此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.
    2、A
    【解析】
    根据正方形的性质和勾股定理列方程求解即可.
    【详解】
    解:设正方形的边长为a,
    ∵正方形的一条对角线之长为3,
    ∴a2+a2=32,
    ∴a=(负值已舍去),
    故选:A.
    本题考查了正方形的性质和勾股定理,熟练掌握正方形的性质是解决问题的关键.
    3、C
    【解析】
    分析:根据矩形的判定方法逐项分析即可.
    详解:A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;
    B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;
    C、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;
    D、根据对角线相等不能得出四边形是矩形,故本选项错误;
    故选C.
    点睛:本题考查了矩形的判定方法的实际应用,熟练掌握矩形的判定方法是解答本题的关键.矩形的判定方法有:①有一个角的直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形.
    4、B
    【解析】
    根据正方形的判定逐项判断即可.
    【详解】
    A、对角线互相垂直的矩形是正方形,此项不符题意
    B、对角线相等的矩形不一定是正方形,此项符合题意
    C、对角线互相垂直且相等的平行四边形是正方形,此项不符题意
    D、对角线相等的菱形是正方形,此项不符题意
    故选:B.
    本题考查了正方形的判定,熟记正方形的判定方法是解题关键.
    5、B
    【解析】
    由平行四边形的性质可知AD∥BC,AD=BC,利用两直线平行得到一对内错角相等,由BE为角平分线得到一对角相等,等量代换得到∠ABE=∠AEB,利用等角对等边得到AB=AE=4,由AD-AE求出ED的长即可.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴AD∥BC,AD=BC=7,
    ∴∠AEB=∠EBC,
    ∵BE平分∠ABC,
    ∴∠ABE=∠EBC,
    ∴∠AEB=∠ABE,
    ∴AB=AE=4,
    ∴ED=AD-AE=BC-AE=7-4=1.
    故选:B.
    此题考查了平行四边形的性质,角平分线的定义,以及等腰三角形的判定,熟练掌握平行四边形的性质是解本题的关键.
    6、A
    【解析】
    根据平行四边形的判定定理分别进行分析即可.
    【详解】
    解:A.不能判定四边形ABCD是平行四边形,四边形可能是等腰梯形,故此选项符合题意;
    B.AB∥CD,可得∠A+∠D=180°,因为∠B=∠D,∠A+∠B=180°,所以AD∥BC,根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;
    C.根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;
    D.根据一组对边平行且相等的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;
    故选:A.
    此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.
    7、A
    【解析】
    连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.
    【详解】
    解:如图,连接AC与BD相交于O,
    在▱ABCD中,OA=OC,OB=OD,
    要使四边形AECF为平行四边形,只需证明得到OE=OF即可;
    A、AF=EF无法证明得到OE=OF,故本选项正确.
    B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,则OB-BE=OD-DF,即OE=OF,故本选项错误;
    C、若AF⊥CF,CE⊥AE,由直角三角形的性质可得OE=AC=OF,故本选项错误;
    D、若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项错误;
    故选:A.
    本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.
    8、C
    【解析】
    了解收集数据的方法及渠道,得出最适合用查阅资料的方法收集数据的选项.
    【详解】
    A、B、D适合用调查的方法收集数据,不符合题意;
    C适合用查阅资料的方法收集数据,符合题意.
    故选C.
    本题考查了调查收集数据的过程与方法.解题关键是掌握收集数据的几种方法:查资料、做实验和做调查.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.
    【详解】
    解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
    ∴CD=BD,
    ∵BC=BD,
    ∴CD=BC=BD,
    ∴△BCD是等边三角形,
    ∴∠B=60°,
    ∴∠A=1°.
    故答案为:1.
    考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.
    10、①③ ①④ ②④ ③④
    【解析】
    根据平行四边形的判定定理确定即可.
    【详解】
    解:如图,
    ①③:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
    ①④:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
    ②④:,, 四边形是平行四边形(一组对边平行且相等的四边形是平行四边形);
    ③④:, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
    所以能判定四边形是平行四边形的组合是①③或①④或②④或③④.
    故答案为:①③或①④或②④或③④.
    本题考查了平行四边形的判定定理,一组对边平行且相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形,灵活选用条件及合适的判定定理是解题的关键.
    11、x≥﹣1
    【解析】
    由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b≥kx解集.
    【详解】
    两个条直线的交点坐标为(−1, 2),且当x≥−1时,直线y=kx在y=ax+b直线的下方,故不等式ax+b≥kx的解集为x≥−1.
    故答案为x≥−1.
    本题考查了一次函数与一元一次不等式的知识点,解题的关键是根据图象可知一次函数与一元一次不等式的增减性.
    12、92
    【解析】
    因为数学期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.
    【详解】
    解:小明的数学期末成绩为 =92(分),
    故答案为:92分.
    本题考查加权平均数的概念.平均数等于所有数据的和除以数据的个数.
    13、二
    【解析】
    根据各象限内点的坐标特征,可得答案.
    【详解】
    解:由点A(x,y)在第三象限,得
    x<0,y<0,
    ∴x<0,-y>0,
    点B(x,-y)在第二象限,
    故答案为:二.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    三、解答题(本大题共5个小题,共48分)
    14、(1)1;(2)详见解析.
    【解析】
    (1)根据题意四边形ABCD是矩形,可得AE=BE,再利用勾股定理得到,即可解答
    (2)延长BF,AD交于点M.,得到再证明,得到,即可解答
    【详解】
    解:(1)∵四边形ABCD是矩形
    ∴ AD=AC=4


    ∴AE=BE




    (2)延长BF,AD交于点M.
    ∵四边形ABCD是矩形
    ∴,∴
    ∵点P是EC的中点
    ∴PC=PE








    此题考查矩形的性质,全等三角形的判定与性质,勾股定理,解题关键在于利用矩形的性质求解
    15、(1) ;(2)证明见解析.
    【解析】
    (1)根据菱形的性质和垂线的性质可得∠ABD=30°,∠DAE=30°,然后再利用三角函数及勾股定理在Rt△ABF中,求得AF,在Rt△AFG中,求得FG和AG,再运用三角形的面积公式求得四边形ABFG的面积;
    (2)设菱形的边长为a,根据(1)中的结论在Rt△ABF、Rt△AFG、Rt△ADE 中分别求得BF、FG、AE,然后即可得到结论.
    【详解】
    解:(1)∵四边形ABCD是菱形,
    ∴AB∥CD,BD平分∠ABC,
    又∵AE⊥CD,∠ABC=60°,
    ∴∠BAE=∠DEA=90°,∠ABD=30°,
    ∴∠DAE=30°,
    在Rt△ABF中,tan30°=,即,解得AF=,
    ∵FG⊥AD,
    ∴∠AGF=90°,
    在Rt△AFG中,FG=AF=,
    ∴AG==1.
    所以四边形ABFG的面积=S△ABF+S△AGF=;
    (2)设菱形的边长为a,则在Rt△ABF中,BF=,AF=,
    在Rt△AFG中,FG=AF=,
    在Rt△ADE中,AE=,
    ∴AE+FG=,
    ∴BF=AE+FG.
    本题主要考查了菱形的性质、勾股定理、三角形的面积公式、利用三角函数值解直角三角形等知识,熟练掌握基础知识是解题的关键.
    16、(1)①详见解析;②45°-α;③,详见解析;(2),或,或
    【解析】
    (1)①由题意补全图形即可;
    ②由正方形的性质得出,由三角形的外角性质得出,由直角三角形的性质得出即可;
    ③在DF上截取DM=BF,连接CM,证明△CDM≌△CBF,得出CM=CF, ∠DCM=∠BCF,得出MF=即可得出结论;
    (2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;
    ②当点E在线段BC的延长线上时,BF=DF+,在BF_上截取BM=DF,连接CM.同(1)③得△CBM≌△CDF得出CM=CF,∠BCM=∠DCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论;
    ③当点E在线段CB的延长线上时,BF+DF=,在DF上截取DM=BF,连接CM,同(1) ③得:ACDM≌△CBF得出CM=CF,∠DCM=∠BCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论.
    【详解】
    解:(1)①如图,
    ②∵四边形ABCD是正方形,
    ∴∠ABC=90°,,
    ∴,
    ∵BF⊥DE,
    ∴∠BFE=90°,
    ∴,
    故答案为:45°-α;
    ③线段BF,CF,DF之间的数量关系是.
    证明如下:在DF上截取DM=BF,连接CM.如图2所示,
    ∵ 正方形ABCD,
    ∴ BC=CD,∠BDC=∠DBC=45°,∠BCD=90°
    ∴∠CDM=∠CBF=45°-α,
    ∴△CDM≌△CBF(SAS).
    ∴ DM=BF, CM=CF,∠DCM=∠BCF.
    ∴ ∠MCF =∠BCF+∠MCE
    =∠DCM+∠MCE
    =∠BCD=90°,
    ∴ MF =.

    (2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;
    ②当点E在线段BC的延长线上时,BF=DF+,理由如下:
    在BF上截取BM=DF,连接CM,如图3所示,
    同(1) ③,得:△CBM≌△CDF (SAS),
    ∴CM=CF, ∠BCM=∠DCF.
    ∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD= ∠ BCD=90°,
    ∴△CMF是等腰直角三角形,
    ∴MF=,
    ∴BF=BM+MF=DF+;
    ③当点E在线段CB的延长线上时,BF+DF=;理由如下:
    在DF上截取DM=BF,连接CM,如图4所示,
    同(1)③得:△CDM≌△CBF,
    ∴CM=CF,∠DCM=∠BCF,
    ∴∠MCF=∠DCF+ ∠MCD= ∠DCF+∠BCF=∠BCD=90°,
    ∴△CMF是等腰直角三 角形,
    ∴MF=,
    即DM+DF=,
    ∴BF+DF=;
    综上所述,当点E在直线BC上时,线段BF,CF,DF之间的数导关系为:,或,或.
    此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.
    17、.
    【解析】
    过点G作GE⊥BC于E,根据轴对称的性质就可以得出BH=DH,由勾股定理就可以得出GH的值.
    【详解】
    解:如图,∵四边形与四边形关于对称,
    ∴四边形四边形,
    ∴,,,.
    ∵四边形是矩形,
    ∴,,,,
    ∴,
    ∴,
    ∴.
    ∴.
    ∵,,
    ∴,.
    设,则,由勾股定理,得

    解得:.
    ∴,
    ∴,
    ∴.
    在中,由勾股定理,得
    .
    答:.
    本题考查了矩形的性质的运用,轴对称的性质的运用,勾股定理的运用,解答时根据轴对称的性质求解是关键.
    18、(1)y=x-2;(2)(0,2)或(0,-6)
    【解析】
    (1)根据一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,-2),可以求得一次函数的表达式;
    (2)根据题意,设出点C的坐标,然后根据S△ABC=2S△AOB,即可求得点C的坐标.
    【详解】
    解:(1)∵一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,-2),
    ∴,得,
    即一次函数的表达式是y=x-2;
    (2)设点C的坐标为(0,c),
    ∵点A(3,1),点B(0,-2),
    ∴OB=2,
    ∵S△ABC=2S△AOB,
    ∴,
    解得,c1=2,c2=-6,
    ∴C点坐标为 (0,2)或(0,-6).
    本题考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、<
    【解析】
    试题解析:∵一次函数y=-1x+5中k=-1<0,
    ∴该一次函数y随x的增大而减小,
    ∵x1>x1,
    ∴y1<y1.
    20、22.5
    【解析】
    ∵ABCD是正方形,
    ∴∠DBC=∠BCA=45°,
    ∵BP=BC,
    ∴∠BCP=∠BPC=(180°-45°)=67.5°,
    ∴∠ACP度数是67.5°-45°=22.5°
    21、1
    【解析】
    连接、,根据勾股定理求出,根据三角形中位线定理解答.
    【详解】
    解:连接、,
    在中,,
    点、分别为、的中点,

    由题意得,当点与点重合时,最大,
    的最大值是4,
    长度的最大值是1,
    故答案为:1.
    本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    22、6
    【解析】
    由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=6,得出BD=2OB=6,由勾股定理求出AD即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵AE垂直平分OB,
    ∴AB=AO,
    ∴OA=AB=OB=6,
    ∴BD=2OB=12,

    故答案为:
    此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
    23、
    【解析】
    如图作PE⊥AB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形,设AE=DF=a,EP=B G=b,BE=PG=c,PF=CG=d,则有a2+b2=9,c2+a2=16,c2+d2=25,可得2(a2+c2)+b2+d2=9+16+25推出b2+d2=18,即可解决问题.
    【详解】
    解:如图作PELAB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形.
    设AE=DF=a,EP=BG=b,BE=PG=c,PF=CG=d,则有:a2+b2=9,c2+a2=16,c2+d2=25
    ∴2(a2+c2)+b2+d2=9+16+25
    ∴b2+d2=18
    ∴PD= ,故答案为 .
    本题考查矩形的性质、勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2).
    【解析】
    (1)根据点A,B的坐标,利用待定系数法即可求出直线AB所对应的函数表达式;
    (2)联立直线OC及直线AB所对应的函数表达式为方程组,通过解方程组可求出点C的坐标,再利用三角形的面积公式结合点A的坐标即可求出△AOC的面积.
    【详解】
    解:(1)设直线AB所对应的函数表达式为y=kx+b(k≠0),
    将A(5,0),B(0,4)代入y=kx+b,得:,
    解得: ,
    ∴直线AB所对应的函数表达式;
    (2)联立直线OC及直线AB所对应的函数表达式为方程组,得:,
    解得:,
    ∴点C坐标,
    .
    本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题的关键是:(1)根据点A,B的坐标,利用待定系数法求出直线AB所对应的函数表达式;(2)联立两直线的函数表达式成方程组,通过解方程组求出点C的坐标.
    25、(1)证明见解析;(2)当AC=AB时,四边形DEFG为正方形,证明见解析
    【解析】
    (1)利用三角形中位线定理推知ED∥FG,ED=FG,则由“对边平行且相等的四边形是平行四边形”证得四边形DEFG是平行四边形,同理得EF=HA=BC=DE,可得结论;
    (2)AC=AB时,四边形DEFG为正方形,通过证明△DCB≌△EBC(SAS),得HC=HB,证明对角线DF=EG,可得结论.
    【详解】
    (1)证明:∵D、E分别为AC、AB的中点,
    ∴ED∥BC,ED=BC.
    同理FG∥BC,FG=BC,
    ∴ED∥FG,ED=FG,
    ∴四边形DEFG是平行四边形,
    ∵AE=BE,FH=BF,
    ∴EF=HA,
    ∵BC=HA,
    ∴EF=BC=DE,
    ∴▱DEFG是菱形;
    (2)解:猜想:AC=AB时,四边形DEFG为正方形,
    理由是:∵AB=AC,
    ∴∠ACB=∠ABC,
    ∵BD、CE分别为AC、AB边上的中线,
    ∴CD=AC,BE=AB,
    ∴CD=BE,
    在△DCB和△EBC中,

    ∴△DCB≌△EBC(SAS),
    ∴∠DBC=∠ECB,
    ∴HC=HB,
    ∵点G、F分别为HC、HB的中点,
    ∴HG=HC,HF=HB,
    ∴GH=HF,
    由(1)知:四边形DEFG是菱形,
    ∴DF=2FH,EG=2GH,
    ∴DF=EG,
    ∴四边形DEFG为正方形.
    故答案为(1)证明过程见解析;(2)当AC=AB时,四边形DEFG为正方形.
    本题考查了平行四边形、矩形的判定、菱形的判定、正方形的判定、三角形的中位线性质定理,三角形中线的性质及等腰三角形的性质,其中三角形的中位线的性质定理为证明线段相等和平行提供了依据.
    26、(1)见解析;(1),四边形AMDN是矩形,见解析.
    【解析】
    (1)根据菱形的性质可得ND∥AM,再根据两直线平行,内错角相等可得∠NDE=∠MAE,∠DNE=∠AME,根据中点的定义求出DE=AE,然后利用“角角边”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=MA,然后利用一组对边平行且相等的四边形是平行四边形证明;
    (1)根据矩形的性质得到DM⊥AB,结合∠DAB=30°,由直角三角形30°角所对的直角边等于斜边的一半解答.
    【详解】
    (1)证明:∵四边形ABCD是菱形,
    ∴ND∥AM.
    ∴∠NDE=∠MAE,∠DNE=∠AME.
    ∵点E是AD中点,
    ∴DE=AE.
    在△NDE和△MAE中,

    ∴△NDE≌△MAE(AAS).
    ∴ND=MA.
    ∴四边形AMDN是平行四边形;
    (1)解:当AM=1时,四边形AMDN是矩形.理由如下:
    ∵四边形ABCD是菱形,
    ∴AD=AB=1,
    ∵平行四边形AMDN是矩形,
    ∴∠AMD=90°.
    ∵∠DAB=30°,
    ∴MD=AD=AB=1.
    在直角△AMD中,.
    本题考查了菱形的性质,平行四边形的判定,全等三角形的判定与性质,矩形的性质,熟记各性质并求出三角形全等是解题的关键,也是本题的突破口.
    题号





    总分
    得分
    批阅人
    相关试卷

    2025届上海市宝山区刘行新华实验学校九上数学开学教学质量检测模拟试题【含答案】: 这是一份2025届上海市宝山区刘行新华实验学校九上数学开学教学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年上海市宝山区刘行新华实验学校数学九上期末统考模拟试题含答案: 这是一份2023-2024学年上海市宝山区刘行新华实验学校数学九上期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中正确的是,若,则的值为等内容,欢迎下载使用。

    2023-2024学年上海市宝山区刘行新华实验学校数学九上期末质量检测模拟试题含答案: 这是一份2023-2024学年上海市宝山区刘行新华实验学校数学九上期末质量检测模拟试题含答案,共8页。试卷主要包含了下列事件中是必然事件的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map