陕西省咸阳市实验中学2024年九上数学开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,菱形ABCD中,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是( )
A.B.
C.D.
2、(4分)某班名学生的身高情况如下表:
关于身高的统计量中,不随、的变化而变化的有( )
A.众数,中位数B.中位数,方差C.平均数,方差D.平均数,众数
3、(4分)已知四边形ABCD中,AB∥CD,对角线AC与BD交于点O,下列条件中不能用作判定该四边形是平行四边形条件的是( )
A.AB=CDB.AC=BDC.AD∥BCD.OA=OC
4、(4分)在平行四边形中,若,则下列各式中,不能成立的是( )
A.B.C.D.
5、(4分)一次函数y=kx+b,当k<0,b<0时,它的图象大致为( )
A.B.C.D.
6、(4分)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有( )
A.2个B.3个C.4个D.5个
7、(4分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
A.20B.15C.10D.5
8、(4分)已知不等式组的解集是x≥2,则a的取值范围是( )
A.a<2B.a=2C.a>2D.a≤2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE于N,若AC=6,BC=8,则MN=_____.
10、(4分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为______.
11、(4分)将函数的图象向下平移3个单位,所得图象的函数解析式为______.
12、(4分)如图,在矩形中,的平分线交于点,连接,若,,则_____.
13、(4分)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?
15、(8分)反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2)
(1)求这两个函数解析式;
(2)在y轴上求作一点P,使PA+PB的值最小,并直接写出此时点P的坐标.
16、(8分)已知一次函数y=kx+b,当x=2时y的值是﹣1,当x=﹣1时y的值是1.
(1)求此一次函数的解析式;
(2)若点P(m,n)是此函数图象上的一点,﹣3≤m≤2,求n的最大值.
17、(10分)为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:
请根据以上统计图中的信息解答下列问题.
(1)植树3株的人数为 ;
(2)扇形统计图中植树为1株的扇形圆心角的度数为 ;
(3)该班同学植树株数的中位数是
(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识
判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果
18、(10分)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.
(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?
(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元, 且不超过26800元,则该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在菱形中,,若菱形的面积是 ,则=____________
20、(4分)对于代数式m,n,定义运算“※”:m※n=(mn≠0),例如:4※2=.若(x﹣1)※(x+2)=,则2A﹣B=_____.
21、(4分)从A,B两题中任选一题作答:
A.如图,在ΔABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。若AF=6,FC=4,连接点E和AC的中点G,则EG的长为__.
B.如图,在ΔABC中,AB=2,∠BAC=60°,点D是边BC的中点,点E在边AC上运动,当DE平分ΔABC的周长时,DE的长为__.
22、(4分)关于x的方程3x+a=x﹣7的根是正数,则a的取值范围是_____.
23、(4分)使式子的值为0,则a的值为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h
请根据上述信息解答下列问题:
(1)C组的人数是 ;
(2)本次调查数据的中位数落在 组内;
(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?
25、(10分)已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.
(1)求这个一次函数的关系式;
(2)在如图所示的平面直角坐标系中作出函数的图像;
(3)由图像观察,当0≤x≤2时,函数y的取值范围.
26、(12分)数学活动课上,老师提出问题:如图,有一张长4dm,宽1dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.
下面是探究过程,请补充完整:
(1)设小正方形的边长为x dm,体积为y dm1,根据长方体的体积公式得到y和x的关系式: ;
(2)确定自变量x的取值范围是 ;
(1)列出y与x的几组对应值.
(4)在下面的平面直角坐标系中,描出补全后的表中各对对应值为坐标的点,并画出该函数的图象如下图;
结合画出的函数图象,解决问题:
当小正方形的边长约为 dm时,(保留1位小数),盒子的体积最大,最大值约为 dm1.(保留1位小数)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据菱形的性质及三角形面积的计算公式可知当点P在BC边上运动时△APM的高不度面积不变,结合选项马上可得出答案为D
【详解】
解:当点P在AB上运动时,可知△APM的面积只与高有关,而高与运动路程AP有关,是一次函数关系;当点P在BC上时,△APM的高不会发生变化,所以此时△APM的面积不变;
当点P在CD上运动时,△APM的面积在不断的变小,并且它与运动的路程是一次函数关系
综上所述故选:D.
本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.
2、A
【解析】
根据统计表可求出中位数和众数,无法求出平均数和方差,根据所求结果即可解答.
【详解】
∵x+y=30-6-8-5-4=7,1.53出现了8次,
∴众数是1.53,中位数是(1.53+1.53)÷2=1.53,不随、的变化而变化;
∵x与y的值不确定,
∴无法求出平均数和方差.
故选A.
此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
3、B
【解析】
A. AB=CD,一组对边平行且相等的四边形是平行四边形;
B. AC=BD,一组对边平行,另一组对边相等的四边形不一定是平行四边形,也可能是等腰梯形;
C. AD∥BC,两组对边分别平行的四边形是平行四边形;
D. OA=OC,通过证明两个三角形全等,得出AB=CD,可以得出平行四边形.故选B.
4、D
【解析】
由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角可以求出∠C,∠D和∠B与∠A是邻角故可求出∠D和∠B,由此可以分别求出它们的度数,然后可以判断了.
【详解】
∵四边形ABCD是平行四边形,
∴∠A=∠C,∠B=∠D,∠A+∠B=180°
而∠A=50°,
∴∠C=∠A=50°,∠B=∠D =130°,
∴D选项错误,
故选D.
本题考查平行四边形的性质,平行四边形的对角相等,邻角互补;熟练运用这个性质求出其它三个角是解决本题的关键.
5、B
【解析】
根据一次函数的性质可得出结论.
【详解】
解:因为 一次项系数 则随的增大而减少,函数经过二,四象限;
常数项 则函数一定经过三、四象限;
因而一次函数的图象一定经过第二、三、四象限.
故选B.
本题考查了一次函数的图像和性质,熟练掌握函数的性质是解题关键.
6、B
【解析】
根据平行四边形的性质可得AD//BC,AD=BC,根据平行线的性质可得∠BEA=∠EAD,根据等腰三角形的性质可得∠ABE=∠BEA,即可证明∠EAD=∠ABE,利用SAS可证明△ABC≌△EAD;可得①正确;由角平分线的定义可得∠BAE=∠EAD,即可证明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正确;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正确;题中③和④不正确.综上即可得答案.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠BEA=∠EAD,
∵AB=AE,
∴∠ABE=∠BEA,
∴∠EAD=∠ABE,
在△ABC和△EAD中,,
∴△ABC≌△EAD(SAS);故①正确;
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠ABE=∠BEA=∠BAE,
∴∠BAE=∠BEA,
∴AB=BE=AE,
∴△ABE是等边三角形;②正确;
∴∠ABE=∠EAD=60°,
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF;⑤正确.
若AD=BF,则BF=BC,题中未限定这一条件,
∴③不一定正确;
如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,
∵△ABE是等边三角形,
∴AG=EH,
若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,
∴④不一定正确;
综上所述:正确的有①②⑤.
故选:B.
本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.
7、B
【解析】
∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.
∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B
8、B
【解析】
解不等式①可得出x≥,结合不等式组的解集为x≥1即可得出a=1,由此即可得出结论.
【详解】
,
∵解不等式①得:x≥,
又∵不等式组 的解集是x≥1,∴a=1.
故选B.
本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
延长CM交AB于G,延长CN交AB于H,证明△BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根据三角形中位线定理计算即可得出答案.
【详解】
如图所示,延长CM交AB于G,延长CN交AB于H,
∵∠ACB=90°,AC=6,BC=8,
∴由勾股定理得AB=10,
在△BMC和△BMG中,
,
∴△BMC≌△BMG,
∴BG=BC=8,CM=MG,
∴AG=1,
同理,AH=AC=6,CN=NH,
∴GH=4,
∵CM=MG,CN=NH,
∴MN=GH=1.
故答案为:1.
本题考查了等腰三角形的判定和性质、三角形的中位线.利用全等证出三角形BCE与三角形ACH是等腰三角形是解题的关键.
10、
【解析】
根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF即可.
【详解】
解:四边形ABCD是矩形,
∴∠A=90°, AB=6,AD=BC=8,
∴BD= =10,
又∵EF是BD的垂直平分线,
∴OB=OD=5,∠BOF=90°,
又∵∠C=90°,
∴△BOF∽△BCD,
∴ ,即:,解得:BF=
本题考查的是矩形的性质、线段垂直平分线的性质、相似三角形的性质和判定以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.
11、y=2x﹣1
【解析】
根据“上加下减”的平移原理,结合原函数解析式即可得出结论.
【详解】
根据“上加下减”的原理可得:
函数y=2x的图象向下平移1个单位后得出的图象的函数解析式为y=2x﹣1.
故答案为:y=2x﹣1.
本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.
12、
【解析】
【分析】由矩形的性质可知∠D=90°,AD=BC=8,DC=AB,AD//BC,继而根据已知可得AB=AE=5,再利用勾股定理即可求得CE的长.
【详解】∵四边形ABCD是矩形,
∴∠D=90°,AD=BC=8,DC=AB,AD//BC,
∴∠AEB=∠EBC,
又∵∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE=5,
∴DC=5,DE=AD-AE=3,
∴CE=,
故答案为.
【点睛】本题考查了矩形的性质,勾股定理的应用,求出AB的长是解题的关键.
13、a<﹣1
【解析】
根据不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变即可解本题.
【详解】
解:∵不等式(a+1)x>a+1的解集为x<1,
∴a+1<0,
∴a<﹣1,
故答案为:a<﹣1.
本题考查了不等式的基本性质,熟练掌握不等式两边同时除以一个负数不等号方向改变是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、所求的多边形的边数为7,这个多边形对角线为14条.
【解析】
设这个多边形的边数为n,根据多边形的内角和是(n-2)•180°,外角和是360°,列出方程,求出n的值,再根据对角线的计算公式即可得出答案.
【详解】
设这个多边形的边数为n,根据题意,得:
(n﹣2)×180°=360°×2+180°,
解得 n=7,
则这个多边形的边数是7,
七边形的对角线条数为:×7×(7﹣3)=14(条),
答:所求的多边形的边数为7,这个多边形对角线为14条.
本题考查了对多边形内角和定理和外角和的应用,注意:边数是n的多边形的内角和是(n-2)•180°,外角和是360°.
15、(1)y1=;y2=﹣x+3;(2)点P(0,).
【解析】
将已知点A分别代入反比例函数和一次函数里,即可求出k、b,再将k、b的值代入两个函数里,就可以求出两个函数的解析式;
作A点关于y轴的对称点,并与B连接这条线段即为所求。根据已知求出B点坐标,再求出新线的解析式,最后求出P点坐标.
【详解】
(1)将点A(1,2)代入y1=,得:k=2,
则y1=;
将点A(1,2)代入y2=﹣x+b,得:﹣1+b=2,
解得:b=3,
则y2=﹣x+3;
(2)作点A关于y轴的对称点A′(﹣1,2),连接A′B,交y轴于点P,即为所求,
如图所示:
由得:或,
∴B(2,1),
设A′B所在直线解析式为y=mx+n,
根据题意,得:,
解得:,
则A′B所在直线解析式为y=3x﹣5,
当x=0时,y=,
所以点P(0,).
函数解析式.
16、(1)一次函数的解析式为;(2)n的最大值是9.
【解析】
试题分析:(1)把x=2,y=-1代入函数y=kx+b,得出方程组,求出方程组的解即可;(2)把P点的坐标代入函数y=-2x+3,求出m的值,根据已知得出不等式组,求出不等式组的解集即可.
试题解析:(1)依题意得:
解得,
∴ 一次函数的解析式为.
(2)由(1)可得,.
∵点P (m , n ) 是此函数图象上的一点,
∴ 即 ,
又∵ ,
∴
解得,.
∴n的最大值是9.
17、(1)12;(2)72°;(3)2;(1)小明的计算不正确,2.1.
【解析】
(1)根据植树2株的人数及其所占的百分比计算出总人数,然后分别减去植树1株,2株,1株,5株的人数即可得到植树3株的人数;
(2)用360°乘以植树1株的人数所占的百分比即可得;
(3)根据中位数的定义可先计算植树的总人数,然后写出即可;
(1)根据平均数的定义判断计算即可.
【详解】
解:(1)植树3株的人数为:20÷10%﹣10﹣20﹣6﹣2=12;
(2)扇形统计图中植树为1株的扇形圆心角的度数为:360°×=72°;
(3)植树的总人数为:20÷10%=50,
∴该班同学植树株数的中位数是2;
(1)小明的计算不正确,
正确的计算为: =2.1.
本题主要考查了扇形统计图和条形统计图、平均数、中位数的知识,根据题意读懂图形并正确计算是解题的关键.
18、(1)购进甲、乙两种服装2件、1件(2)共有11种方案(3)购进甲种服装70件,乙种服装130件
【解析】
(1)设购进甲种服装x件,则乙种服装是(200-x)件,根据两种服装共用去32400元,即可列出方程,从而求解.
(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据总利润(利润=售价-进价)不少于26700元,且不超过2620元,即可得到一个关于y的不等式组,解不等式组即可求得y的范围,再根据y是正整数整数即可求解.
(3)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
【详解】
解:(1)设购进甲种服装x件,则乙种服装是(200-x)件,
根据题意得:12x+150(200-x)=32400,
解得:x=2,200-x=200-2=1.
∴购进甲、乙两种服装2件、1件.
(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据题意得:
,解得:70≤y≤2.
∵y是正整数,∴共有11种方案.
(3)设总利润为W元,则W=(140-a)y+130(200-y),即w=(10-a)y+3.
①当0<a<10时,10-a>0,W随y增大而增大,
∴当y=2时,W有最大值,此时购进甲种服装2件,乙种服装1件.
②当a=10时,(2)中所有方案获利相同,所以按哪种方案进货都可以.
③当10<a<20时,10-a<0,W随y增大而减小,
∴当y=70时,W有最大值,此时购进甲种服装70件,乙种服装130件.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由菱形的性质得AO=CO=6cm,BO=DO,AC⊥BD,由菱形的面积可求BD的长,由勾股定理可求AB的长.
【详解】
解:如图,
∵四边形ABCD是菱形
∴AO=CO=6cm,BO=DO,AC⊥BD
∵S菱形ABCD=×AC×BD=96
∴BD=16cm
∴BO=DO=8cm
∴AB==10cm
故答案为10cm
本题考查了菱形的性质,掌握菱形的面积公式是解决本题的关键.
20、-1
【解析】
由可得答案.
【详解】
由题意,得:
故答案为:﹣1.
本题主要考查分式的混合运算,解题的关键是掌握分式的加减混合运算顺序和运算法则.
21、A.5 B.
【解析】
A.由作法知MN是线段AB的垂直平分线,所以BF=AF=6,然后根据EG是三角形ABC的中位线求解即可;
B. 延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.由ED平分ΔABC的周长,可知EB′=EC,从而DE为ΔCBB′的中位线,由等腰三角形的性质求出∠B=∠B′=30°,从而BF=,进而可求出DE的长.
【详解】
A.由尺规作图可得直线MN为线段AB的垂直平分线,
∴BF=AF=6,E为AB中点,
∵点G为AC中点,
∴EG为ΔABC的中位线,
∴EG∥BC且EG =BC,
∵BF+FC=10,
∴EG=5;
B.如图所示,延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.
∵ED平分ΔABC的周长,∴AB+AE+BD=EC+DC.
∵BD=DC, ∴AB+AE=EC.
∵AB=AB′, ∴EB′=EC,
∴DE为ΔCBB′的中位线.
∵∠BAC=60°,
∴ΔBAB′为顶角是120°的等腰三角形 ,
∴∠B=∠B′=30°,
∴AF=1,
∴BF=,
∴BB′=2,
∴ED=.
故答案为:A. 5;B.
本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,三角形中位线的性质,等腰三角形的性质、勾股定理,掌握三角形中位线定理、正确作出辅助线是解题的关键.
22、a<﹣7
【解析】
求出方程的解,根据方程的解是正数得出>0,求出即可.
【详解】
解:3x+a=x-7
3x-x=-a-7
2x=-a-7
x=,
∵>0,
∴a<-7,
故答案为:a<-7
本题考查解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.
23、
【解析】
根据分式值为0,分子为0,分母不为0解答即可.
【详解】
∵的值为0,
∴2a-1=0,a+2≠0,
∴a=.
故答案为:
本题考查分式为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式为0的条件是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)根C组的人数为140人;(2)调查数据的中位数落在C组;(3)达国家规定体育活动时间的人约有20000人.
【解析】
(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;
(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;
(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.
【详解】
解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;
(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;
(3)达国家规定体育活动时间的人数约占×100%=62.5%.
所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).
本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.
25、(1)y=5x-4;(2)详见解析;(3)-4≤y≤1.
【解析】
(1)设函数解析式y=kx+b,将题中的两个条件代入即可得出解析式;
(2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运用两点法即可确定函数图象.
(3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤1.
【详解】
解:(1)设函数的关系式为y=kx+b,
则由题意,得 解得,
∴一次函数的关系式为y=5x-4;
(2)所作图形如图.
(3)∵0≤x≤2,
∴y的取值范围是:-4≤y≤1.
故答案为:(1)y=5x-4;(2)图形见解析;(3)-4≤y≤1.
本题考查待定系数法求函数解析式及一次函数图象上点的坐标特征,难度不大,注意掌握一次函数的性质.
26、(1) (或);(2);(1)m=1,n=2;(4)~都行,1~1.1都行.
【解析】
根据题意,列出y与x的函数关系式,根据盒子长宽高值为正数,求出自变量取值范围;利用图象求出盒子最大体积.
【详解】
(1)y=x(4−2x)(1−2x)=4x−14x+12x
故答案为:y=4x−14x+12x
(2)由已知
解得:0
(4)根据图象,当x=0.55dm时,盒子的体积最大,最大值约为1.01dm1
故答案为:~都行,1~1.1都行
此题考查函数的表示方法,函数自变量的取值范围,函数图像,解题关键在于看懂图中数据.
题号
一
二
三
四
五
总分
得分
身高(m)
人数
x/dm
…
…
y/dm1
…
1.1
2.2
2.7
m
1.0
2.8
2.5
n
1.5
0.9
…
陕西省咸阳市秦都区咸阳市实验中学2024年九上数学开学调研模拟试题【含答案】: 这是一份陕西省咸阳市秦都区咸阳市实验中学2024年九上数学开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省东营市实验中学2024年数学九上开学联考模拟试题【含答案】: 这是一份山东省东营市实验中学2024年数学九上开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届咸阳市重点中学数学九上开学质量检测模拟试题【含答案】: 这是一份2025届咸阳市重点中学数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。