陕西省西安市东城第一中学2024-2025学年九上数学开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x之间的关系可表示为( )
A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)
2、(4分)如图,在菱形中,对角线、相交于点,,,过作的平行线交的延长线于点,则的面积为( )
A.22B.24C.48D.44
3、(4分)下列命题中,真命题是( )
A.相等的角是直角
B.不相交的两条线段平行
C.两直线平行,同位角互补
D.经过两点有且只有一条直线
4、(4分)如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )
A.6B.8C.10D.12
5、(4分)一辆客车从甲站开往乙站,中途曾停车休息了一段时间,如果用横轴表示时间t,纵轴表示客车行驶的路程s,如图所示,下列四个图像中能较好地反映s和t之间的函数关系的是( )
A.B.C.D.
6、(4分)下列边长相等的正多边形的组合中,不能镶嵌平面的是( )
A.正三角形和正方形B.正三角形和正六边形
C.正方形和正八边形D.正五边形和正方形
7、(4分)关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )
A.2B.-2C.±2D.-
8、(4分)如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:① ② ③ ④其中正确的结论有( )
A.①②B.②③C.①②③D.①②③④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简:+=___.
10、(4分)在平面直角坐标系中,已知坐标,将线段(第一象限)绕点(坐标原点)按逆时针方向旋转后,得到线段,则点的坐标为____.
11、(4分)若+(y﹣2)2=0,那么(x+y)2018=_____.
12、(4分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为_____.
13、(4分)分式的值为0,那么的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)化简求值:÷•,其中x=-2
15、(8分)如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?
16、(8分)用配方法解方程:x2-6x+5=0
17、(10分)人教版八年级下册第19章《一次函数》中“思考”:这两个函数的图象形状都是直线,并且倾斜程度相同,函数的图象经过原点,函数的图象经与y轴交于点(0,5),即它可以看作直线向上平移5个单位长度而得到。比较一次函数解析式与正比例函数解析式,容易得出:一次函数的图象可由直线通过向上(或向下)平移个单位得到(当b>0时,向上平移,当b<0时,向下平移)。
(结论应用)一次函数的图象可以看作正比例函数 的图象向 平移 个单位长度得到;
(类比思考)如果将直线的图象向右平移5个单位长度,那么得到的直线的函数解析式是怎样的呢?我们可以这样思考:在直线上任意取两点A(0,0)和B(1,),将点A(0,0)和B(1,)向右平移5个单位得到点C(5,0)和D(6,),连接CD,则直线CD就是直线AB向右平移5个单位长度后得到的直线,设直线CD的解析式为:,将C(5,0)和D(6,)代入得到:解得,所以直线CD的解析式为:;①将直线向左平移5个单位长度,则平移后得到的直线解析式为 .②若先将直线向左平移4个单位长度后,再向上平移5个单位长度,得到直线,则直线的解析式为: .
(拓展应用)已知直线:与直线关于x轴对称,求直线的解析式.
18、(10分)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简的结果是______
20、(4分)如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.
21、(4分)函数自变量的取值范围是 _______________ .
22、(4分)如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为_____.
23、(4分)将直线向上平移1个单位,那么平移后所得直线的表达式是_______________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在由边长为1的小正方形组成的网格中,的三个顶点均在格点上,请解答:
(1)判断的形状,并说明理由;
(2)在网格图中画出AD//BC,且AD=BC;
(3)连接CD,若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.
25、(10分)计算:(1)分解因式:m2(x﹣y)+4n2(y﹣x);
(2)解不等式组,并把解集在数轴上表示出来;
(3)先化简,再求解, ,其中x=﹣2.
26、(12分)已知一次函数的图象经过点.
(1)求此函数的解析式;
(2)若点为此一次函数图象上一动点,且△的面积为2,求点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
直接利用长方形面积求法得出答案.
【详解】
解:∵长方形的周长为16cm,其中一边长为xcm,
∴另一边长为:(8﹣x)cm,
∴y=(8﹣x)x.
故选C.
此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.
2、B
【解析】
先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.
【详解】
解:∵AD∥BE,AC∥DE,
∴四边形ACED是平行四边形,
∴AC=DE=6,
在RT△BCO中,BO=,即可得BD=8,
又∵BE=BC+CE=BC+AD=10,
∴△BDE是直角三角形,
∴S△BDE=.
故答案为:B.
此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.
3、D
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解: A,不正确,因为相等的角也可能是锐角或钝角;
B,不正确,因为前提是在同一平面内;
C,不正确,因为两直线平行,同位角相等;
D,正确,因为两点确定一条直线.
故选D.
本题考查命题与定理.
4、C
【解析】
由平行四边形的性质得出DC=AB=4,AD=BC=1,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.
【详解】
∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=1.
∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=1+4=2.
故选C.
本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
5、D
【解析】
分析:由于s是客车行驶的路程,那么在整个过程中s应该是越来越大的,即可对B和C进行判断;中间停车休息了一段时间,s会有一段时间处于不增加的状态,即可对A进行判断;D选项的s越来越大,且中间有一段时间s不增加,进而进行求解.
详解:横轴表示时间t,纵轴表示行驶的路程s,那么随着时间的增多,路程也随之增多,应排除B、C;由于中途停车休息一段时间,时间增加,路程没有增加,排除A.
故选D.
点睛:本题主要考查了函数的图象的知识,根据题意,找出题目中关键的语句结合各选项进行分析是解题的关键.
6、D
【解析】
首先分别求出各个正多边形每个内角的度数,再结合镶嵌的条件作出判断.
【详解】
解:A项,正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴能密铺;
B项,正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴能密铺;
C项,正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,∴能密铺;
D项,正五边形的每个内角是108°,正方形的每个内角是90°,∵90m+108n=360,,没有正整数解,∴此种情形不能密铺;
故选D.
本题考查了平面镶嵌的条件,解决此类问题,一般从正多边形的内角入手,围绕一个顶点处的所有内角之和是360°进行探究判断.
7、B
【解析】
根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.
【详解】
由题意得:m2-3=1,且m+1<0,
解得:m=-2,
故选:B.
此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.
8、D
【解析】
由根与系数的关系,结合顶点位置和坐标轴位置,进行分析即可得到答案.
【详解】
解:设函数图像与x轴交点的横坐标分别为x1,x2
则根据根于系数的关系得到:x1+x2=b, x1x2=c
∵A,B两点位于y轴两侧,且对称轴在y轴的右侧,则b>0
函数图像交y轴于C点,则c<0,
∴bc<0,即①正确;
又∵顶点坐标为( ),即()
∴=4,即
又∵ =,即
∴AB=4即③正确;
又∵A,B两点位于y轴两侧,且对称轴在y轴的右侧
∴<2,即b<4
∴0<b<4,故②正确;
∵顶点的纵坐标为4,
∴△ABD的高为4
∴△ABD的面积= ,故④正确;
所以答案为D.
本题考查了二次函数与一元二次方程的联系,熟练掌握二次函数和一元二次方程的性质是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.
解答:解:原式==1.
点评:本题考查了分式的加减运算.最后要注意将结果化为最简分式.
10、
【解析】
根据旋转的性质求出点的坐标即可.
【详解】
如图,将点B绕点(坐标原点)按逆时针方向旋转后,得到点
点的坐标为
故答案为:.
本题考查了坐标点的旋转问题,掌握旋转的性质是解题的关键.
11、1
【解析】
直接利用偶次方的性质以及算术平方根的定义得出x,y的值,进而得出答案.
【详解】
∵+(y-2)2=0,
∴x+3=0,y-2=0,
解得:x=-3,y=2,
则(x+y)2018=(-3+2)2018=1.
故答案为:1.
此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
12、1
【解析】
先求出每次延长后的面积,再发现规律即可求解.
【详解】
解:最初边长为1,面积1,
延长一次为,面积5,
再延长为51=5,面积52=25,
下一次延长为5,面积53=125,
以此类推,
当N=4时,正方形A4B4C4D4的面积为:54=1.
故答案为:1.
此题主要考查勾股定理的应用,解题的关键是根据题意找到规律进行求解.
13、-1
【解析】
根据分式值为0得出分子等于0求出x的值,再根据分母不等于0排除x=1,即可得出答案.
【详解】
∵分式的值为0
∴
解得:x=1或x=-1
又x-1≠0
∴x=-1
故答案为-1.
本题考查的是分式的值为0,属于基础题型,注意分式值为0则分子等于0,但分母不等于0.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
把除法转化成乘法,再进行乘法运算求得结果,最后把x的值代入化简结果求值即可.
【详解】
֥
=
=;
当x=时,原式=.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
15、E点应建在距A站1千米处.
【解析】
关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.
【详解】
解:设AE=xkm,
∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,
由勾股定理,得152+x2=12+(25﹣x)2,x=1.
故:E点应建在距A站1千米处.
本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.
16、x1=5,x2=1.
【解析】
首先移项,把方程变形为x2-6x=-5的形式,方程两边同时加上一次项系数的一半,则方程的左边是完全平方式,右边是常数,然后利用直接开平方法即可求解.
【详解】
x2-6x+5=0
移项得,x2-6x=-5
x2-6x+9=-5+9,
∴(x-3)2=4,
∴x-3=±2,
解得x1=5,x2=1.
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
17、【结论应用】y=x,下,1;
【类比思考】①y=-6x-10;②y=-6x-3;
【拓展应用】y=-2x-1.
【解析】
【结论应用】
根据题目材料中给出的结论即可求解;
【类比思考】
①在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移5个单位得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
②在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移4个单位长度,再向上平移5个单位长度得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
【拓展应用】
在直线:y=2x+1上任意取两点A(0,1)和B(1,5),作点A和B关于x轴的对称点C、D,根据关于x轴对称的点的规律得到C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式.
【详解】
解:【结论应用】一次函数y=x-1的图象可以看作正比例函数y=x的图象向下平移1个单位长度而得到.
故答案为y=x,下,1;
【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移5个单位得到点C(-5,0)和D(-4,-6),连接CD,则直线CD就是直线AB向左平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+b(k≠0),
将C(-5,0)和D(-4,-6)代入得到:
,
解得
,
所以直线CD的解析式为:y=-6x-10.
故答案为y=-6x-10;
②在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移4个单位长度,再向上平移5个单位长度得到点C(-4,5)和D(-1,-1),连接CD,则直线CD就是直线AB向左平移4个单位长度,再向上平移5个单位长度后得到的直线,
设直线CD的解析式为:y=kx+b(k≠0),
将C(-4,5)和D(-1,-1)代入得到:
解得
所以直线的解析式为:y=-6x-3.
故答案为y=-6x-3;
【拓展应用】在直线:y=2x+1上任意取两点A(0,1)和B(1,5),
则点A和B关于x轴的对称点分别为C(0,-1)或D(1,-5),连接CD,则直线CD就是直线AB关于x轴对称的直线,
设直线CD的解析式为:y=kx+b(k≠0),
将C(0,-1)或D(1,-5)代入得到:
解得
所以直线关于x轴对称的直线的解析式为y=-2x-1.
本题考查了一次函数图象与几何变换,一次函数与二元一次方程(组),考查了学生的阅读理解能力与知识的迁移能力.理解阅读材料是解题的关键.
18、不是,理由见解析.
【解析】
先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.
【详解】
解:如图,设梯子下滑至CD,
∵Rt△OAB中,AB=2.5m,AO=2.4m,
∴OB=m,
同理,Rt△OCD中,
∵CD=2.5m,OC=2.4-0.4=2m,
∴OD=m,
∴BD=OD-OB=1.5-0.7=0.8(m).
答:梯子底端B向外移了0.8米.
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣1
【解析】
分析:直接利用分式加减运算法则计算得出答案.
详解:==.
故答案为-1.
点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.
20、答案不唯一,如∠ACB=90° 或∠BAC=45°或∠B=45°
【解析】
先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.
【详解】
∠ACB=90°时,四边形ADCF是正方形,
理由:∵E是AC中点,
∴AE=EC,
∵DE=EF,
∴四边形ADCF是平行四边形,
∵AD=DB,AE=EC,
∴DE=BC,
∴DF=BC,
∵CA=CB,
∴AC=DF,
∴四边形ADCF是矩形,
点D. E分别是边AB、AC的中点,
∴DE//BC,
∵∠ACB=90°,
∴∠AED=90°,
∴矩形ADCF是正方形.
故答案为∠ACB=90°.
此题考查正方形的判定,解题关键在于掌握判定法则
21、x>-3
【解析】
根据题意得:x+3>0,即x>-3.
22、1
【解析】
首先证明OE=BC,再由AE+EO=4,推出AB+BC=8,然后计算周长即可解答.
【详解】
解:∵四边形ABCD是平行四边形,∴OA=OC,
∵AE=EB,∴OE=BC,
∵AE+EO=4,∴2AE+2EO=8,
∴AB+BC=8,
∴平行四边形ABCD的周长=2×8=1,
故答案为:1.
本题考查了平行四边形的性质、三角形中位线定理,熟练掌握是解题的关键.
23、
【解析】
平移时k的值不变,只有b发生变化.
【详解】
原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,
那么新直线的k=2,b=0+1=1,
∴新直线的解析式为y=2x+1.
故答案为:y=2x+1.
本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.
二、解答题(本大题共3个小题,共30分)
24、(1)是直角三角形,理由见解析;(2)图见解析;(3)四边形是菱形,理由见解析.
【解析】
(1)先结合网格特点,利用勾股定理求出三边长,再根据勾股定理的逆定理即可得;
(2)先利用平移的性质得到点D,再连接AD即可;
(3)先根据线段中点的定义、等量代换可得,再根据平行四边形的判定可得四边形AECF是平行四边形,然后根据直角三角形的性质可得,最后根据菱形的判定、正方形的判定即可得.
【详解】
(1)是直角三角形,理由如下:
,,
即
是直角三角形;
(2)由平移的性质可知,先将点B向下平移3个单位,再向右平移4个单位可得点C
同样,先将点A向下平移3个单位,再向右平移4个单位可得点D,然后连接AD
则有,且,作图结果如下所示:
(3)四边形是菱形,理由如下:
为中点,为中点
,
,即
四边形是平行四边形
又为中点,是的斜边
平行四边形是菱形
不是等腰直角三角形
与BC不垂直,即
菱形不是正方形
综上,四边形是菱形.
本题考查了作图—平移、勾股定理与勾股定理的逆定理、菱形的判定、正方形的判定等知识点,较难的是题(3),熟练掌握特殊四边形的判定方法是解题关键.
25、(1)(x﹣y)(m+2n)(m-2n);(2),见解析;(3)4-6.
【解析】
(1)先提公因式,再用平方差公式二次分解;
(2)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集,然后画数轴表示即可;
(3)先把括号内通分化简,然后把分子、分母分解因式约分,再把x=﹣2代入化简的结果计算.
【详解】
解:(1)m2(x﹣y)+4n2(y﹣x)
=(x﹣y)(m2-4n2)
=(x﹣y)(m+2n)(m-2n).
(2)∵
∴,
解得:,如下图,
(3)原式=
==,
当x=﹣2时,原式=4-6
本题考查了因式分解,解不等式组,分式的化简求值,熟练掌握各知识点是解答本题的关键.
26、(1)一次函数的解析式为
(2)
【解析】试题分析:(1),根据题意可设一次函数的解析式y=kx+b(k≠0),将A,B两点代入可求出k,b,进而可求出函数表达式;
对于(2),设点P的坐标为(a,-2a+4),结合A点的坐标可得OA的长,继而根据△POA的面积为2可得到|a|的值,据此可得到点P的坐标.
试题解析:(1)设解析式为y=kx+b(k≠0)
∵一次函数的图象经过点, ,
∴,解得,
∴一次函数的解析式为
(2)∵
当时,
当时,
题号
一
二
三
四
五
总分
得分
批阅人
陕西省西安市雁塔区陕西师范大附属中学2024-2025学年九上数学开学检测模拟试题【含答案】: 这是一份陕西省西安市雁塔区陕西师范大附属中学2024-2025学年九上数学开学检测模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省西安市工大附中2024-2025学年数学九上开学统考模拟试题【含答案】: 这是一份陕西省西安市工大附中2024-2025学年数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省西安市高新第一中学2024-2025学年九上数学开学质量检测模拟试题【含答案】: 这是一份陕西省西安市高新第一中学2024-2025学年九上数学开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

