陕西省西安市高新第一中学2025届九上数学开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是( )
A.14cmB.8cmC.9cmD.10cm
2、(4分)若分式有意义,则a的取值范围为( )
A.a≠4B.a>4C.a<4D.a=4
3、(4分)某商品降价后欲恢复原价,则提价的百分数为( ).
A.B.C.D.
4、(4分)小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是( )
A.小时B.小时C.或小时D.或或小时
5、(4分)的值是( )
A.B.3C.±3D.9
6、(4分)在四边形ABCD中,对角线AC、BD相交于点O,从①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC⊥BD;⑥AC平分∠BAD;这六个条件中,则下列各组组合中,不能推出四边形ABCD为菱形的是( )
A.①②⑤B.①②⑥C.③④⑥D.①②④
7、(4分)笔记本每本a元,买3本笔记本共支出y元,在这个问题中:
①a是常量时,y是变量;
②a是变量时,y是常量;
③a是变量时,y也是变量;
④a,y可以都是常量或都是变量.
上述判断正确的有( )
A.1个B.2个C.3个D.4个
8、(4分)去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )
A.最低温度是32℃B.众数是35℃C.中位数是34℃D.平均数是33℃
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知:如图,平行四边形中,平分交于,平分交于,若,,则___.
10、(4分)若,则=______
11、(4分)若二次根式有意义,则的取值范围是______________.
12、(4分)如图,中, D是AB的中点,则CD=__________.
13、(4分)如图,在中,,.对角线AC与BD相交于点O,,则BD 的长为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:=-.
15、(8分)任丘市举办一场中学生乒乓球比赛,比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分费用与参加比赛的人数(x)人成正比.当x=20时,y=1600;当x=30时,y=1.
(1)求y与x之间的函数关系式;
(2)如果承办此次比赛的组委会共筹集;经费6350元,那么这次比赛最多可邀请多少名运动员参赛?
16、(8分)某校为了迎接体育中考,了解学生的体质情况,学校随机调查了本校九年级名学生“秒跳绳”的次数,并将调查所得的数据整理如下:
秒跳绳次数的频数、频率分布表
秒跳绳次数的频数分布直方图
、
根据以上信息,解答下列问题:
(1)表中, , ;
(2)请把频数分布直方图补充完整;
(3)若该校九年级共有名学生,请你估计“秒跳绳”的次数以上(含次)的学生有多少人?
17、(10分)如图,在四边形中,,于点,.求证.
18、(10分)如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.
(1)猜想BG与EG的数量关系.并说明理由;
(2)延长DE,BA交于点H,其他条件不变,
①如图2,若∠ADC=60°,求的值;
②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm.
20、(4分)在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O,分别交边AD,BC于点E,F,点G,H分别是OB,OD的中点,当四边形EGFH为矩形时,则BF的长_________________.
21、(4分)如图,在平面直角坐标系中直线y=−x+10与x轴,y轴分别交于A.B两点,C是OB的中点,D是线段AB上一点,若CD=OC,则点D的坐标为___
22、(4分)如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为__.
23、(4分)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则这两人10次射击命中环数的方差____.(填“>”、“<”或“=”)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,直线y1=x+1与双曲线(k>0)相交于点A、B,已知点A坐标(2,m).
(1)求k的值;
(2)求点B的坐标,并观察图象,写出当时,x的取值范围.
25、(10分)为了解高中学生每月用掉中性笔笔芯的情况,随机抽查了30名高中学生进行调查,并将调查的数据制成如下的表格:
请根据以上信息,解答下列问题:
(1)被调查的学生月平均用中性笔笔芯数大约________根;
(2)被调查的学生月用中性笔笔芯数的中位数为________根,众数为________根;
(3)根据样本数据,若被调查的高中共有1000名学生,试估计该校月平均用中性笔笔芯数9根的约多少人?
26、(12分)计算:÷
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用勾股定理列式求出AC,再根据矩形的对角线互相平分且相等求出OA=OD=AC,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=OD,再求出AF,AE,然后根据三角形的周长公式列式计算即可得解.
【详解】
由勾股定理得,AC==10cm
∵四边形ABCD是矩形
∴OA=OD=AC=×10=5cm
∵点E、F分别是AO、AD的中点
∴EF=OD=cm
AF=×8=4cm
AE=OA=cm
∴△AEF的周长=+4+=9cm.
故选C.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,矩形的性质,勾股定理,熟记定理与性质是解题的关键.
2、A
【解析】
分式有意义时,分母a-4≠0
【详解】
依题意得:a−4≠0,
解得a≠4.
故选:A
此题考查分式有意义的条件,难度不大
3、C
【解析】
解:设原价为元,提价百分数为,则,解得,故选.
4、C
【解析】
利用众数及中位数的定义解答即可.
【详解】
解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;
当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;
当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;
当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C.
本题考查了众数及中位数的概念,解题的关键是根申请题意,并结合题意分类讨论解答.
5、B
【解析】
根据二次根式的性质解答.
【详解】
解:原式==3
二次根式:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a<0时,二次根式无意义.
6、D
【解析】
根据题目中所给条件可得①②组合,③④组合都能判定四边形为平行四边形,再根据一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形进行判定.
【详解】
,,
四边形是平行四边形,
如果加上条件⑤可利用对角线互相垂直的平行四边形是菱形进行判定;
如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定;
,,
四边形是平行四边形,
如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定.
故选:.
此题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
7、B
【解析】
由题意得:y=3a,
此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,
故选B.
8、D
【解析】
分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
故选D.
点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先证明AB=AE=3,DC=DF=3,再根据EF=AE+DF-AD即可计算.
【详解】
四边形是平行四边形,
,,,
平分交于,平分交于,
,,
,,
.
故答案为1.
本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.
10、
【解析】
设=k,同x=2k,y=4k,z=5k,再代入中化简即可.
【详解】
设=k,
x=2k,y=4k,z=5k
=.
故答案是:.
考查的是分式化简问题,利用比例性质通过设未知数的方式,代入分式化简可以求解.
11、
【解析】
根据二次根式的意义,被开方数是非负数求解即可.
【详解】
根据题意得:
解得,
故答案为:.
本题主要考查学生对二次根式有意义时被开方数的取值的掌握,熟知二次根式有意义的条件是解题的关键.
12、6.1
【解析】
首先根据勾股定理求得AB=13,然后由“斜边上的中线等于斜边的一半”来求CD的长度.
【详解】
∵Rt△ABC中,,
∴AB===13,
∵D为AB的中点,
∴CD=AB=6.1.
故答案为:6.1.
本题考查了勾股定理和直角三角形斜边上的中线.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
13、
【解析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.
【详解】
解:∵AC⊥BC,AB=CD=10,AD=6,
∴AC===8,
∵▱ABCD的对角线AC与BD相交于点O,
∴BO=DO,AO=CO=AC=4,
∴OD===2 .
∴BD=4.
故答案为:4.
本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
先确定最简公分母是,将方程两边同时乘以最简公分母约去分母可得:,然后解一元一次方程,最后再代入最简公分母进行检验.
【详解】
去分母得:,
解得:,
经检验是分式方程的解.
本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.
15、 (1) 函数的解析式是:y=40x+800;(2) 这次比赛最多可邀请138名运动员.
【解析】
(1)根据叙述即可得到y与x之间的关系是一次函数关系,可以利用待定系数法求解;(2)在(1)求得的函数解析式中,令y=6350,即可求得x的值.
【详解】
解:(1)设y=kx+b,根据题意得:
解得:
则函数的解析式是:y=40x+800
(2)在y=40x+800中y=6350
解得:x=138
则这次比赛最多可邀请138名运动员.
本题考查待定系数法求一次函数解析式,解题关键是灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
16、(1);;(2)详见解析;(3)336
【解析】
(1)根据0≤x<20的频数除以频率求出总人数,进而求出a,m的值即可;
(2)求出40≤x<60的频数,补全条形统计图即可;
(3)求出“30秒跳绳”的次数60次以上(含60次)的频率,乘以600即可得到结果.
【详解】
(1)根据题意得:a=10÷(5÷0.1)=0.2,b=0.14×(5÷0.1)=7,m=50-(5+10+7+12)=16;
故答案为:0.2;16;
(2)如图所示,柱高为;
(3)(人)
则“30秒跳绳”的次数60次以上(含60次)的学生约有336人.
此题考查了频数(率)分布直方图,以及利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
17、见解析
【解析】
根据勾股定理AB2+BC2=AC2,得出AB2+BC2=2AB2,进而得出AB=BC;
【详解】
证明:连接.
∵,
∴.
∵,
∴.
∵,
∴.
∴.
∴.
本题考查了勾股定理的应用,正确作出辅助线是解答本题的关键. 在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.
18、(1),理由见解析;(2);(3).
【解析】
(1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结论;(2)①方法一:过点G作GM∥BH,交DH于点M,证明ΔGME∽ΔBHE,即可得,再证明是等边三角形,可得 ,由此可得;方法二:延长,交于点,证明ΔHBM为等边三角形,再证明∽ ,即可得结论;②如图3,连接EC交DF于O根据三角函数定义得csα=,则OF=bcsα,DG=a+2bcsα,同理表示AH的长,代入计算即可.
【详解】
(1),
理由如下:
∵四边形是平行四边形,
∴∥,.
∵四边形是菱形,
∴∥,.
∴∥,.
∴.
又∵,
∴≌ .
∴.
(2)方法1:过点作∥,交于点,
∴.
∵,
∴∽.
∴.
由(1)结论知.
∴.
∴.
∵四边形为菱形,
∴.
∵四边形是平行四边形,
∴∥.
∴.
∵∥,
∴.
∴,
即.
∴是等边三角形。
∴.
∴.
方法2:延长,交于点,
∵四边形为菱形,
∴.
∵四边形为平形四边形,
∴,∥.
∴.
,
即.
∴为等边三角形.
∴.
∵∥,
∴,.
∴∽ ,
∴.
由(1)结论知
∴.
∴.
∵,
∴ .
(3). 如图3,连接EC交DF于O,
∵四边形CFED是菱形,
∴EC⊥AD,FD=2FO,
设FG=a,AB=b,则FG=a,EF=ED=CD=b,
Rt△EFO中,csα=,
∴OF=bcsα,
∴DG=a+2bcsα,
过H作HM⊥AD于M,
∵∠ADC=∠HAD=∠ADH=α,
∴AH=HD,
∴AM=AD=(2a+2bcsα)=a+bcsα,
Rt△AHM中,csα=,
∴AH=,
∴==csα.
本题是四边形综合题,其中涉及到菱形的性质,等边三角形、全等三角形、平行四边形的判定与性质,综合性较强,难度适中.利用数形结合及类比思想是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、55
【解析】
利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.
【详解】
设长为8x,高为11x,
由题意,得:19x+20≤115,
解得:x≤5,
故行李箱的高的最大值为:11x=55,
答:行李箱的高的最大值为55厘米.
此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.
20、或
【解析】
根据矩形ABCD中,AB=2,BC=6,可求出对角线的长,再由点G、H分别是OB、OD的中点,可得GH=BD,从而求出GH的长,若四边形EGFH为矩形时,EF=GH,可求EF的长,通过作辅助线,构造直角三角形,由勾股定理可求出MF的长,最后通过设未知数,列方程求出BF的长.
【详解】
解:如图:过点E作EM⊥BC,垂直为M,
矩形ABCD中,AB=2,BC=6,
∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,
在Rt△ABD中,BD==2,
又∵点G、H分别是OB、OD的中点,
∴GH=BD=,
当四边形EGFH为矩形时,GH=EF=,
在Rt△EMF中,FM==,
易证△BOF≌△DOE (AAS),
∴BF=DE,
∴AE=FC,
设BF=x,则FC=6-x,由题意得:x-(6-x)=,或(6-x)-x=,,
∴x=或x=,
故答案为:或.
考查矩形的性质、直角三角形的性质,勾股定理等知识,合理的作辅助线,将问题转化显得尤为重要,但是,分情况讨论容易受图形的影响而被忽略,应切实注意.
21、(4,8)
【解析】
由解析式求得B的坐标,加入求得C的坐标,OC=5,设D(x,-x+10),根据勾股定理得出x +(x-5)=25,解得x=4,即可求得D的坐标.
【详解】
由直线y=−x+10可知:B(0,10),
∴OB=10,
∵C是OB的中点,
∴C(0,5),OC=5,
∵CD=OC,
∴CD=5,
∵D是线段AB上一点,
∴设D(x,-x+10),
∴CD=
∴
解得x =4,x =0(舍去)
∴D(4,8),
故答案为:(4,8)
此题考查一次函数与平面直角坐标系,勾股定理,解题关键在于利用勾股定理进行计算
22、答案为:y=﹣2x+3.
【解析】【分析】设直线l的函数解析式为y=kx+b,先由平行关系求k,再根据交点求出b.
【详解】设直线l的函数解析式为y=kx+b,
因为,直线l与直线y=﹣2x+1平行,
所以,y=﹣2x+b,
因为,与直线y=﹣x+2的交点纵坐标为1,
所以,1=﹣x+2,x=1
所以,把(1,1)代入y=-2x+b,解得b=3.
所以,直线l的函数解析式为:y=﹣2x+3.
故答案为:y=﹣2x+3.
【点睛】本题考核知识点:一次函数解析式. 解题关键点:熟记一次函数的性质.
23、>
【解析】
先分别求出各自的平均数,再根据方差公式求出方差,即可作出比较.
【详解】
甲的平均数
则
乙的平均数
则
所以
本题属于基础应用题,只需学生熟练掌握方差的求法,即可完成.
二、解答题(本大题共3个小题,共30分)
24、(1)k=6;(2)当x<﹣3或0<x<2时,;
【解析】
分析:(1)设A(2,m),将A纵坐标代入一次函数解析式求出m的值,确定出A坐标,代入反比例解析式求出k的值,即可确定出反比例解析式;
(2)联立两函数解析式求出B的坐标,由A与B横坐标,利用图象即可求出当时,自变量x的取值范围.
详解:(1)∵A(2,m),
将A(2,m)代入直线y=x+1得:m=3,即A(2,3)
将A(2,3)代入关系式 y= 得:k=6;
(2)联立直线与反比例解析式得:,
消去y得: x+1=,
解得: x=2或x=﹣3,
将x=﹣3代入y=x+1, 得:y=﹣3+1=﹣2,即B(﹣3,﹣2),
则当x<﹣3或0<x<2时,.
点睛:本题考查了反比例函数与一次函数的交点问题,利用数形结合的思想,熟练掌握数形结合思想是解本题的关键.
25、 (1)6;(2)6,6;(3)100
【解析】
(1)根据平均数的概念求解;(2)根据中位数的概念求解;(3)用人数×平均数即可求解.
【详解】
解:(1)月平均用中性笔笔芯数:=6(根);
(2)∵共有30名学生,
∴第15和16为同学的月用中性笔笔芯数的平均数为中位数:=6;被调查的学生月用中性笔笔芯数的众数为:6;
(3)1000×=100(根).
本题考查了平均数、中位数和众数等知识,掌握平均数、中位数、众数的概念是解答本题的关键.
26、-1.
【解析】
直接利用二次根式的混合运算法则分别化简得出答案.
【详解】
解:原式
.
此题主要考查了二次根式的混合运算,熟悉运算法则是解题关键.
题号
一
二
三
四
五
总分
得分
月平均用中性笔笔芯(根)
4
5
6
7
8
9
被调查的学生数
7
4
9
5
2
3
陕西省西安市雁塔区高新一中2024年九上数学开学达标检测模拟试题【含答案】: 这是一份陕西省西安市雁塔区高新一中2024年九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省西安市西北大附属中学2025届数学九上开学检测模拟试题【含答案】: 这是一份陕西省西安市西北大附属中学2025届数学九上开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省西安市高新区三中学2025届数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份陕西省西安市高新区三中学2025届数学九年级第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。