陕西省西安电子科技大附中2025届九上数学开学联考模拟试题【含答案】
展开
这是一份陕西省西安电子科技大附中2025届九上数学开学联考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列运算结果正确的是( )
A.=﹣3B.(﹣)2=2C.÷=2D.=±4
2、(4分)若代数式有意义,则x的取值是( )
A.x=2B.x≠2C.x=3D.x≠﹣3
3、(4分)下列调查方式中适合的是( )
A.要了解一批节能灯的使用寿命,采用普查方式
B.调查你所在班级同学的身高,采用抽样调查方式
C.环保部门调查长江某段水域的水质情况,采用抽样调查方式
D.调查全市中学生每天的就寝时间,采用普查方式
4、(4分)如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2, 0),则点C的坐标为( )
A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)
5、(4分)如图, 四边形是平行四边形,对角线、交于点,是的中点,以下说法错误的是( )
A.B.C.D.
6、(4分)如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,且这两个正方形的边长都为1.若正方形A1B1C1O绕点O转动,则两个正方形重叠部分的面积为( )
A.16B.4C.1D.1
7、(4分)匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是( )
A.B.
C.D.
8、(4分)下列各组数中不能作为直角三角形三边长的是( )
A.7,9,12B.5,12,13C.1,,D.3,4,5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)不等式的正整数解的和______;
10、(4分)已知△ABC 的一边长为 10,另两边长分别是方程 x2 14 x 48 0 的两个根若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是_______________.
11、(4分)对于一次函数y=(a+2)x+1,若y随x的增大而增大,则a的取值范围________
12、(4分)如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为_____cm.
13、(4分)如图,五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,连接A、B两个顶点,过顶点C作CD⊥AB,垂足为D.“十字”形被分割为了①、②、③三个部分,这三个部分恰好可以无缝隙、不重合地拼成一个矩形,这个矩形的长与宽的比值为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,的对角线相交于点分别为的中点.求证:.
15、(8分)商场代售某品牌手机,原来每台的售价是3000元,一段时间后为了清库存,连续两次降价出售,现在的售价是1920元,求两次降价的平均降价率是多少?
16、(8分)在数学课上,老师出了这样一道题:甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍。求高铁列车从甲地到乙地的时间.老师要求同学先用列表方式分析再解答.下面是两个小组分析时所列的表格:
小组甲:设特快列车的平均速度为xkm/h.
小组乙:高铁列车从甲地到乙地的时间为yh
(1)根据题意,填写表格中空缺的量;(2)结合表格,选择一种方法进行解答.
17、(10分)王先生准备采购一批(大于100条)某种品牌的跳绳,采购跳绳有在实体店和网店购买两种方式,通过洽谈,获得了以下信息:
(1)请分别写出王先生在实体店、网店购买跳绳所需的资金y1、y2元与购买的跳绳数x(x>100)条之间的函数关系式;
(2)王先生选取哪种方式购买跳绳省钱?
18、(10分)四边形ABCD是边长为4的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF,
图1 图2
(1)如图1,当点E与点A重合时,则_____;
(2)如图2,当点E在线段AD上时,,
①求点F到AD的距离;
②求BF的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知正比例函数图象经过点(4,﹣2),则该函数的解析式为_____.
20、(4分)如图,一次函数的图象交轴于点,交轴于点,点在线段上,过点分别作轴于点,轴于点.若矩形的面积为,则点的坐标为______.
21、(4分)若代数式有意义,则实数的取值范围______________
22、(4分)利用计算机中“几何画板”软件画出的函数和的图象如图所示.根据图象可知方程的解的个数为3个,若m,n分别为方程和的解,则m,n的大小关系是________.
23、(4分)如图,在△ABC中,AB=BC=4,S△ABC=4,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为_______
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.
(1)写出BE与AF之间的关系,并证明你的结论;
(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长;
(3)如图3,在(2)的条件下,作FQ∥DG交AB于点Q,请直接写出FQ的长.
25、(10分)如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°
(1)求证:AG=FG;
(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.
26、(12分)用公式法解下列方程:
(1)2x2−4x−1=0;
(2)5x+2=3x2.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平方根和算术平方根的知识点进行解答得到答案.
【详解】
A. ,错误;
B. (﹣)2=2,正确;
C. ,错误;
D. ,错误;
故选B.
本题主要考查二次根式的性质与化简,仔细检查是关键.
2、D
【解析】
试题解析:由题意得:x+3≠0,
解得:x≠-3,
故选D.
3、C
【解析】
利用抽样调查,全面普查适用范围直接判断即可
【详解】
A. 要了解一批节能灯的使用寿命,应采用抽样调查方式,故A错
B. 调查你所在班级同学的身高,应采用全面普查方式,故B错
C. 环保部门调查沱江某段水域的水质情况,应采用抽样调查方式,故C对
D. 调查全市中学生每天的就寝时间,应采用抽样调查方式,故D错
本题主要全面普查和抽样调查应用范围,基础知识牢固是解题关键
4、A
【解析】
作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH-OB=3-2=1,于是可写出C点坐标.
【详解】
作CH⊥x轴于H,如图,
∵点B的坐标为(2,0),AB⊥x轴于点B,
∴A点横坐标为2,
当x=2时,y=x=2,
∴A(2,2),
∵△ABO绕点B逆时针旋转60°得到△CBD,
∴BC=BA=2,∠ABC=60°,
∴∠CBH=30°,
在Rt△CBH中,CH=BC=,
BH=CH=3,
OH=BH-OB=3-2=1,
∴C(-1,).
故选A.
5、D
【解析】
由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OE≠BE,得出∠BOE≠∠OBC,选项D错误;即可得出结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,AB∥DC,AB=CD,
又∵点E是BC的中点,
∴OE是△BCD的中位线,
∴OE=DC,OE∥DC,,
∴∠BOE=∠ODC,
∴选项A、B、C正确;
∵OE≠BE,
∴∠BOE≠∠OBC,
∴选项D错误;
故选:D.
此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.
6、C
【解析】
在正方形ABCD中,OA=OB,∠OAE=∠OBF=45°,
∵∠AOE+∠BOE=90°,∠BOF+∠BOE=90°,
∴∠AOE=∠BOF,
在△AOE与△BOF中,
,
∴△AOE≌△BOF(ASA),
则四边形OEBF的面积
=S△BOE+S△BOF= S△BOE +S△AOE=S△AOB=S正方形ABCD==1.
故选C.
7、C
【解析】
根据注水的容器可知最底层h上升较慢,中间层加快,最上一层更快,即可判断.
【详解】
∵匀速地向如图的容器内注水,
由注水的容器可知最底层底面积大,h上升较慢,中间层底面积较小,高度h上升加快,最上一层底面积最小,h上升速度最快,故选C.
此题主要考查函数图像的识别,解题的关键是根据题意找到对应的函数图像.
8、A
【解析】
根据勾股定理逆定理即可求解.
【详解】
∵72+92≠122,
所以A组不能作为直角三角形三边长
故选A.
此题主要考查勾股定理,解题的关键是熟知勾股定理的逆定理进行判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3.
【解析】
先解出一元一次不等式,然后选取正整数解,再求和即可.
【详解】
解:解得;x<3,;则正整数解有2和1;
所以正整数解的和为3;故答案为3.
本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.
10、1
【解析】
求出方程的解,根据勾股定理的逆定理得出三角形ABC是直角三角形,根据已知得出圆形正好是△ABC的外接圆,即可求出答案.
【详解】
解:解方程x2-14x+48=0得:x1=6,x2=8,
即△ABC的三边长为AC=6,BC=8,AB=10,
∵AC2+BC2=62+82=100,AB2=100,
∴AB2=AC2+BC2,
∴∠C=90°
∵若用一圆形纸片将此三角形完全覆盖,
则该圆形纸片正好是△ABC的外接圆,
∴△ABC的外接圆的半径是AB=1,
故答案为1.
本题考查勾股定理的逆定理,三角形的外接圆与外心,解一元二次方程的应用.
11、a>-1
【解析】
一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.
【详解】
解:根据一次函数的性质,对于y=(a+1)x+1,
当a+1>0时,即a>-1时,y随x的增大而增大.
故答案是a>-1.
本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
12、1.
【解析】
根据正方形的面积可用对角线进行计算解答即可.
【详解】
解:连接AC,BD交于点O,
∵B、E、F、D四点在同一条直线上,
∴E,F在BD上,
∵正方形AECF的面积为50cm2,
∴AC2=50,AC=10cm,
∵菱形ABCD的面积为120cm2,
∴=120,BD=24cm,
所以菱形的边长AB==1cm.
故答案为:1.
此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
13、2
【解析】
如图,连接AC、BC、BE、AE,根据图形可知四边形ACBE是正方形,进而利用正方形的性质求出即可
【详解】
如图,连接AC、BC、BE、AE,
∵五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,
∴四边形ACBE是正方形,
∵CD⊥AB,
∴点D为对角线AB、CE的交点,
∴CD=AB,
∴这个矩形的长与宽的比值为=2,
故答案为:2
此题主要考查了图形的剪拼,正确利用正方形的性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
利用平行四边形得到,由E、F分别为OC、OA的中点得到OE=OF,由此证明△OBE≌△ODF,得到BE=DF.
【详解】
∵四边形是平行四边形,
∴.
∵分别是的中点,
∴,
∴.
在和中,
∴,
∴.
此题考查平行四边形的对角线相等的性质,线段中点的性质,利用SAS证明三角形全等,将所证明的等量线段放在全等三角形中证明三角形全等的思路很关键,解题中注意积累方法.
15、20%
【解析】
设平均每次降价率为x,那么原价格×(1-x)2=两次降价后的现价,把相应数值代入即可求解.
【详解】
解:设平均每次降价率为x,依题意得:
,
解得:,(不合题意舍去),
答:平均每次的降价率为20%.
本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.
16、(1)见解析;(2)见解析.
【解析】
(1)根据路程=速度×时间填写即可;
(2)小组甲:根据乘高铁列车从甲地到乙地比乘特快列车少用9h列方程求解,然后检验;小组乙:根据高铁列车的平均行驶速度是特快列车的2.8倍列方程求解,然后检验;
【详解】
(1)
(2)利用乘高铁列车从甲地到乙地比乘特快列车少用9h,高铁列车的平均行驶速度是特快列车的2.8 倍得出等量关系
第一种:
,解得:x=100,
经检验x=100 是原方程的解,
2.8x=280,
答:特快列车的平均行驶速度为100km/h,特高列车的平均行驶速度为280km/h;
第二种:,
解得:y=5 经检验y=5 是原方程的解,
y+9=14,
答: 乘高铁列车从甲到乙5 小时,乘特快列车14 小时.
本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.
17、(1)y1=32x;y2=28x+1200;(2)当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
【解析】
(1)根据题意和表格求得用这两种方式购买跳绳所需的资金y(元)与购买的跳绳数x(条)之间的函数关系式即可.(2)比较(1)中求出的两个函数的大小并求出x的范围即可.(3)令y=10000,可以求得两种方式分别可以购买的跳绳数,从而可以得到王先生用不超过10000元购买跳绳,他最多能购买多少条跳绳.
【详解】
(1)由题意可得:
王先生在实体店购买跳绳所需的资金y1(元)与购买的跳绳数x(条)之间的函数关系式为:y1=40x×0.8=32x;
王先生在网店购买跳绳所需的资金y2(元)与购买的跳绳数x(条)之间的函数关系式为:y2=40×100+(x-100)×40×0.7=28x+1200;
(2)当y1>y2时,32x>28x+1200,
解得x>300;
当y1=y2时,32x=28x+1200,
解得x=300;
当y1<y2时,32x>28x+1200,
解得x<300;
∴当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
本题考查一次函数的应用,明确题意,找出所求问题需要的条件,列出相应的函数关系式,会根据函数的值,求出相应的x的值是解题关键.
18、 (1);(2)①点F到AD的距离为1;②BF=.
【解析】
(1)根据勾股定理依次求出AC、CF、BF长即可;
(2)①过点F作,由正方形的性质可证,根据全等三角形的性质可得FH的长;②延长FH交BC的延长线于点K,求出BK、FK的长,根据勾股定理可得解.
【详解】
解:(1) 当点E与点A重合时,点C、D、F在一条直线,连接CF,在中,,同理可得
(2)①过点F作交AD的延长线于点H,如图所示
∵四边形CEFG是正方形,
∴,
∴,
又∵四边形ABCD是正方形,
∴
∴,
∴
又∵,
∴
∴
∵,,
∴,
∴,即点F到AD的距离为1.
②延长FH交BC的延长线于点K,如图所示
∴,
∴四边形CDHK为矩形,
∴,
∴,
∵,
∴,
∴,
∴,
在中,
本题综合考查了四边形及三角形,主要涉及的知识点有勾股定理、正方形的性质、矩形的判定与性质、全等三角形的证明与性质,灵活利用勾股定理求线段的长是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=﹣x
【解析】
设正比例函数的解析式为y=kx(k≠0),然后将点(4,-2)代入该解析式列出关于系数k的方程,通过解方程即可求得k的值.
【详解】
解:设正比例函数的解析式为y=kx(k≠0).
∵正比例函数图象经过点(4,-2),
∴-2=4k,
解得,k=,
∴此函数解析式为:y=x;
故答案是:y=x.
本题考查了待定系数法确定函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
20、(,1)或(,3)
【解析】
由点P在一次函数y=﹣2x+4的图象上,可设P(x,﹣2x+4),由矩形OCPD的面积是可求解.
【详解】
解:∵点P在一次函数y=﹣2x+4的图象上,
∴设P(x,﹣2x+4),
∴x(﹣2x+4)=,
解得:x1=,x2=,
∴P(,1)或(,3).
故答案是:(,1)或(,3)
本题运用了一次函数的点的特征的知识点,关键是运用了数形结合的数学思想.
21、
【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,x﹣1≥0,
解得:x≥1
故答案为:x≥1.
本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
22、
【解析】
的解可看作函数与的交点的横坐标的值,可看作函数与的交点的横坐标的值,根据两者横坐标的大小可判断m,n的大小.
【详解】
解:作出函数的图像,与函数和的图象分别交于一点,所对的横坐标即为m,n的值,如图所示
由图像可得
故答案为:
本题考查了函数与方程的关系,将方程的解与函数图像相结合是解题的关键.
23、2
【解析】
试题解析::如图,过A作AH⊥BC交CB的延长线于H,
∵AB=CB=4,S△ABC=4,
∴AH=2,
∴cs∠HAB=,
∴∠HAB=30°,
∴∠ABH=60°,
∴∠ABC=120°,
∵∠BAC=∠C=30°,
作点P关于直线AC的对称点P′,
过P′作P′Q⊥BC于Q交AC于K,
则P′Q 的长度=PK+QK的最小值,
∴∠P′AK=∠BAC=30°,
∴∠HAP′=90°,
∴∠H=∠HAP′=∠P′QH=90°,
∴四边形AP′QH是矩形,
∴P′Q=AH=2,
即PK+QK的最小值为2.
本题考查了轴对称确定最短路线问题,矩形的性质,解直角三角形,熟记利用轴对称确定最短路线的方法是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)BE=AF,BE⊥AF;(2)GD是∠EGF的角平分线,证明见解析,GD=;(3)FQ=.
【解析】
(1)根据已知条件可先证明△BAE≌△ADF,得到BE=AF,再由角的关系得到∠AGE=90°从而证明BE⊥AF;
(2)过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,根据勾股定理和三角形的面积相等求出DN,然后证明△AEG≌△DEM,得到DN=DM,再根据角平分线的性质可证明GD平分∠EGF,进而在等腰直角三角形中求得GD;
(3)过点G作GH∥AQ交FQ于H,可得到四边形DFHG是平行四边形,进而可得△FGH∽△FAQ,然后根据三角形相似的性质可求得FQ.
【详解】
解:(1)BE=AF,BE⊥AF,理由:
四边形ABCD是正方形,
∴BA=AD=CD,∠BAE=∠D=90°,
∵DE=CF,
∴AE=DF,
∴△BAE≌△ADF(SAS),
∴BE=AF,∠ABE=∠DAF,
∵∠ABE+∠AEB=90°,
∴∠DAF+∠AEB=90°,
∴∠AGE=90°,
∴BE⊥AF
(2)如图2,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,
在Rt△ADF中,根据勾股定理得,AF=,
∵S△ADF=AD×FD=AF×DN,
∴DN=,
∵△BAE≌△ADF,
∴S△BAE=S△ADF,
∵BE=AF,
∴AG=DN,
∵AE=DE,∠MED=∠AEG,∠DME=∠AGM,
∴△AEG≌△DEM(AAS),
∴AG=DM,
∴DN=DM,
∵DM⊥BE,DN⊥AF,
∴GD平分∠MGN,即GD平分∠EGF,
∴∠DGN=∠MGN=45°,
∴△DGN是等腰直角三角形,
∴GD=DN=;
(3)如图3,由(2)知,GD=,AF=,AG=DN=,
∴FG=AF﹣AG=,
过点G作GH∥AQ交FQ于H,
∴GH∥DF,
∵FQ∥DG,
∴四边形DFHG是平行四边形,
∴FH=DG=,
∵GH∥AQ,
∴△FGH∽△FAQ,
∴,
∴ ,
∴FQ=.
全等三角形的判定和性质、勾股定理、角平分线的性质、平行四边形的判定和性质都是本题的考点,此题综合性比较强,熟练掌握基础知识并作出合适的辅助线是解题的关键.
25、(1)证明见解析;(2)2.
【解析】
试题分析:(1)证明:过C点作CH⊥BF于H点
∵∠CFB=45°
∴CH=HF
∵∠ABG+∠BAG=90°, ∠FBE+∠ABG=90°
∴∠BAG=∠FBE
∵AG⊥BF CH⊥BF
∴∠AGB=∠BHC=90°
在△AGB和△BHC中
∵∠AGB=∠BHC,∠BAG=∠HBC, AB=BC
∴△AGB≌△BHC
∴AG=BH, BG=CH
∵BH=BG+GH
∴BH=HF+GH=FG
∴AG=FG
(2) ∵CH⊥GF∴CH∥GM∵C为FM的中点
∴CH=GM∴BG=GM∵BM=10
∴BG=, GM=(1分)∴AG=AB=10
∴HF=∴CF=×∴CM=
过B点作BK⊥CM于K
∵CK==, ∴BK=
过D作DQ⊥MF交MF延长线于Q
∴△BKC≌△CQD
∴CQ=BK=
DQ=CK=∴QF=-=∴DF==
考点:三角形和正方形
点评:本题考查三角形和正方形的知识,解本题的关键是熟练掌握三角形和正方形的一些性质,此题难度较大
26、 (1) x1=,x2=;(2) x1=2,x2=−.
【解析】
把原方程化为一元二次方程的一般形式,根据求根公式x=求解即可.
【详解】
(1)∵△=16+8=24>0,
∴x==,
x1=,x2=;
(2)先整理得到3x2−5x−2=0,∵△=25+24=49>0,∴x=,x1=2,x2=−.
本题考查解一元二次方程-公式法,解题的关键是掌握解一元二次方程-公式法.
题号
一
二
三
四
五
总分
得分
批阅人
购买方式
标价(元条)
优惠条件
实体店
40
全部按标价的8折出售
网店
40
购买100或100条以下,按标价出售;购买100条以上,从101条开始按标价的7折出售(免邮寄费)
相关试卷
这是一份陕西省西安市西安交大附中2024年九上数学开学调研试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届陕西省西安交通大附中九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届陕西省西安电子科技大附属中学九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。