陕西省西安市西安交大附中2024年九上数学开学调研试题【含答案】
展开
这是一份陕西省西安市西安交大附中2024年九上数学开学调研试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系内,点在第三象限,则m的取值范围是
A.B.C.D.
2、(4分)下列标识中,既是轴对称图形,又是中心对称图形的是()
A.B.C.D.
3、(4分)已知一次函数y=kx﹣b(k≠0)图象如图所示,则kx﹣1<b的解集为( )
A.x>2B.x<2C.x>0D.x<0
4、(4分)若正比例函数y=kx的图象经过点(2,1),则k的值为( )
A.﹣B.C.﹣2D.2
5、(4分)如图,正方形ABCD,点E、F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG的长为( )
A.B.5C.D.
6、(4分)估计的结果在( ).
A.8至9之间B.9至10之间C.10至11之间D.11至12之间
7、(4分)化简的结果是( )
A.B.C.1D.
8、(4分)如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)( )
A.2个B.3个C.4个D.5个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若某人沿坡度在的斜坡前进则他在水平方向上走了_____
10、(4分)若点在正比例函数的图象上,则__________.
11、(4分)一个有进水管与出水管的容器,从某时刻开始内只进水不出水,在随后的内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量单位:)与时间(单位)之间的关系如图所示:则时容器内的水量为__________.
12、(4分)如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间________秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
13、(4分)已知一次函数()经过点,则不等式的解集为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)铜仁市积极推动某公园建设,通过旅游带动一方经济,计划经过若干年使公园绿化总面积新增450万平方米.自2016年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可以提前3年完成任务.
(1)求实际每年绿化面积是多少万平方米
(2)为加大公园绿化力度,市政府决定从2019年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?
15、(8分)如图,在四边形中,、、、分别是、、、的中点,.求证:.
16、(8分)如图,四边形是正方形,点是上的任意一点,于点,交于点.求证:
17、(10分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.
请根据图中的信息解答下列问题
(1)补全条形统计图
(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为__________人;
(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.
18、(10分)已知:在中,对角线、交于点,过点的直线交于点,交于点.
求证:,.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于的方程有增根,则的值为________.
20、(4分)如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数的图象经过P,D两点,则AB的长是______.
21、(4分)如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是_____.
22、(4分)一次跳远中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有____人.
23、(4分)如图,正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF、BF、E′F.若AE=2.则四边形ABFE′的面积是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
根据图示填写下表:
结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
25、(10分)如图,已知G、H是△ABC的边AC的三等分点,GE∥BH,交AB于点E,HF∥BG交BC于点F,延长EG、FH交于点D,连接AD、DC,设AC和BD交于点O,求证:四边形ABCD是平行四边形.
26、(12分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;
结论2:B′D∥AC
…
(应用与探究)
在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由于在平面直角坐标系内,点在第三象限,根据点在平面直角坐标系内符号特征可得:,解不等式组可得:不等式组的解集是.
【详解】
因为点在第三象限,
所以,
解得不等式组的解集是,
故选C.
本题主要考查点在平面直角坐标系内符号特征,解决本题的关键是要熟练掌握点在平面直角坐标系内点的符号特征.
2、A
【解析】
试题分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形性质做出判断.①既是中心对称图形,也是轴对称图形,故此选项正确;②不是中心对称图形,是轴对称图形,故此选项错误;③不是中心对称图形,是轴对称图形,故此选项错误;④是中心对称图形,不是轴对称图形,故此选项正确.
故选A.
考点:中心对称图形;轴对称图形.
3、C
【解析】
将kx-1<b转换为kx-b<1,再根据函数图像求解.
【详解】
由kx-1<b得到:kx-b<1.
∵从图象可知:直线与y轴交点的坐标为(2,1),
∴不等式kx-b<1的解集是x>2,
∴kx-1<b的解集为x>2.
故选C.
本题考查的是一次函数的图像,熟练掌握函数图像是解题的关键.
4、B
【解析】
根据一次函数图象上点的坐标特征,把(2,1)代入y=kx中即可计算出k的值.
【详解】
把(2,1)代入y=kx得2k=1,解得k=.
故选B.
本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).
直线上任意一点的坐标都满足函数关系式y=kx+b.
5、C
【解析】
如图,连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,列出方程即可解决问题.
【详解】
如图,连接BE、BF.
∵四边形ABCD是正方形,
∴AB=BC=CD=AD=5,
∵AE=1,CF=2,
∴DE=4,DF=3,
∴EF==5,
∵S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,
∴•5•BG=25-•5•1-•5•2-•3•4,
∴BG=,
故选C.
本题考查正方形的性质、勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,学会利用分割法求三角形面积,学会构建方程解决问题,属于中考常考题型.
6、C
【解析】
先把无理数式子进行化简,化简到6-3的形式,再根据2.236
相关试卷
这是一份陕西西安市交大附中2025届九上数学开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省西安市西北工大附中九级2024年数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届陕西省西安市西安交大阳光中学数学九上开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。