![陕西省户县2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16291809/0-1729904876629/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![陕西省户县2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16291809/0-1729904876646/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![陕西省户县2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16291809/0-1729904876666/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
陕西省户县2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】
展开
这是一份陕西省户县2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)化简:的结果是( )
A.B.C.﹣D.﹣
2、(4分)如图,在△ABC中,AB=3,AC=4,BC=1,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=110°;④S四边形AEFD=1.正确的个数是( )
A.1个B.2个
C.3个D.4个
3、(4分)已知,则( )
A.B.C.D.
4、(4分)y=(m﹣1)x|m|+3m表示一次函数,则m等于( )
A.1B.﹣1C.0或﹣1D.1或﹣1
5、(4分)一根长为20cm的长方形纸条,将其按照图示的过程折叠,若折叠完成后纸条两端超出点P的长度相等,且PM=PN=5cm,则长方形纸条的宽为( )
A.1.5cmB.2cmC.2.5cmD.3cm
6、(4分)下列二次根式中,属于最简二次根式的是( )
A.B.C.D.
7、(4分)下列各式因式分解正确的是( )
A.B.
C.D.
8、(4分)如图,在平面直角坐标系中,矩形的边平行于坐标轴,对角线经过坐标原点,点在函数的图象上,若点的坐标是,则的值为( )
A.B.C.D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是 .
10、(4分)在一次智力抢答比赛中,四个小组回答正确的情况如下图.这四个小组平均正确回答__________道题目?(结果取整数)
11、(4分)如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是_________________.
12、(4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.
13、(4分)已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形中,,于点,试求的度数.
15、(8分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。
(1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。
(2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。
16、(8分)某市为鼓励市民节约用水,自来水公司按分段收费标准收费,如图反映的是每月水费(元)与用水量(吨)之间的函数关系.
(1)当用水量超过10吨时,求关于的函数解析式(不必写自变量取值范围);
(2)按上述分段收费标准小聪家三、四月份分别交水费38元和27元,问四月份比三月份节约用水多少吨?
17、(10分)(1)如图1,在矩形中,对角线与相交于点,过点作直线,且交于点,交于点,连接,且平分.
①求证:四边形是菱形;
②直接写出的度数;
(2)把(1)中菱形进行分离研究,如图2,分别在边上,且,连接为的中点,连接,并延长交于点,连接.试探究线段与之间满足的关系,并说明理由;
(3)把(1)中矩形进行特殊化探究,如图3,矩形满足时,点是对角线上一点,连接,作,垂足为点,交于点,连接,交于点.请直接写出线段三者之间满足的数量关系.
18、(10分)综合与探究
如图,在平面直角坐标系中,直线y=x-3与坐标轴交于A,B两点.
(1)求A,B两点的坐标;
(2)以AB为边在第四象限内作等边三角形ABC,求△ABC的面积;
(3)在平面内是否存在点M,使得以M,O,A,B为顶点的四边形是平行四边形,若存在,直接写出M点的坐标:若不存在,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,如果要使 ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________.
20、(4分)若分式方程有增根,则a的值为_____.
21、(4分) 如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(6,8),则点C的坐标是_____.
22、(4分)若一次函数的图象不经过第二象限,则的取值范围为_________0.
23、(4分)已知不等式组的解集为,则的值是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)国家规定,中小学生每天在校体育活动时间不低于.为此,某县就“你每天在校体育活动时间是多少”的问题,随机调查了辖区内300名初中学生.根据调查结果绘制成统计图如图所示,其中组为,组为,组为,组为.
请根据上述信息解答下列问题:
(1)本次调查数据的中位数落在______组内,众数落在______组内;
(2)若该辖区约4000名初中生,请你估计其中达到国家规定体育活动时间的人数;
(3)若组取,组取,组取,组取,试计算这300名学生平均每天在校体育活动的时间.
25、(10分)(1)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(单位:分)
若欲从中表扬2人,请你从平均数的角度分析,那两人将被表扬?
(2)为了提现科学差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数,请你从折合平均数的角度分析,哪两人将被表扬?
26、(12分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据二次根式的性质由题意可知,我们在变形时要注意原式的结果应该是个负数,然后根据二次根式的性质化简而得出结果.
【详解】
解:原式
故选:.
本题考查了二次根式的性质与二次根式的化简,关键要把握住二次根式成立的条件.
2、C
【解析】
由,得出∠BAC=90°,则①正确;由等边三角形的性质得∠DAB=∠EAC=60°,则∠DAE=110°,由SAS证得△ABC≌△DBF,得AC=DF=AE=4,同理△ABC≌△EFC(SAS),得AB=EF=AD=3,得出四边形AEFD是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE=110°,则③正确;∠FDA=180°-∠DFE=30°,过点作于点,,则④不正确;即可得出结果.
【详解】
解:∵,
∴,
∴∠BAC=90°,
∴AB⊥AC,故①正确;
∵△ABD,△ACE都是等边三角形,
∴∠DAB=∠EAC=60°,
又∴∠BAC=90°,
∴∠DAE=110°,
∵△ABD和△FBC都是等边三角形,
∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,
∴∠DBF=∠ABC,
在△ABC与△DBF中,
,
∴△ABC≌△DBF(SAS),
∴AC=DF=AE=4,
同理可证:△ABC≌△EFC(SAS),
∴AB=EF=AD=3,
∴四边形AEFD是平行四边形,故②正确;
∴∠DFE=∠DAE=110°,故③正确;
∴∠FDA=180°-∠DFE=180°-110°=30°,
过点作于点,
∴,
故④不正确;
∴正确的个数是3个,
故选:C.
本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、平角、周角、平行是四边形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.
3、B
【解析】
先利用二次式的乘法法则与二次根式的性质求出m=2= ,再利用夹值法即可求出m的范围.
【详解】
解:=2=,
∵25<28<36,
∴.
故选:B.
本题考查了二次根式的运算,二次根式的性质,估算无理数的大小,将m化简为是解题的键.
4、B
【解析】
由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.
5、B
【解析】
设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,除了AP和BM的长度中间的长度为5x,将折叠的纸条展开,根据题意列出方程式求出x的值即可.
【详解】
解:如图:
设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,MN=20
由题意可得:5×2+5x=20
解得:x=2
故选:B.
本题考查了翻折变换的知识以及学生的动手操作能力,解答本题的关键是仔细观察图形,得到各线段之间存在的关系.
6、C
【解析】
根据最简二次根式的定义对各选项分析判断利用排除法求解.
【详解】
解:A、不是最简二次根式,错误;
B、不是最简二次根式,错误;
C、是最简二次根式,正确;
D、不是最简二次根式,错误;
故选:C.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
7、A
【解析】
分别利用完全平方公式以及平方差公式分解因式判断得出即可.
【详解】
解:A、,故此选项正确;
B、,故此选项错误;
C、,故此选项错误;
D、根据,故此选项错误.
故选:A.
此题主要考查了完全平方和平方差分解因式,根据已知熟练掌握相关公式是解题关键.
8、B
【解析】
先利用矩形的性质得到矩形AEOM的面积等于矩形OFCN的面积,则根据反比例函数图象上点的坐标特征得到k的值.
【详解】
解:连接BD,设A(x,y),
如图,∵矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,
∴矩形AEOM的面积等于矩形ONCF的面积,
∴xy=k=3×(−2),即k=−6,
故选:B.
本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了矩形的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题分析:延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.
解:连接AE,并延长交CD于K,
∵AB∥CD,
∴∠BAE=∠DKE,∠ABD=∠EDK,
∵点E、F、G分别是BD、AC、DC的中点.
∴BE=DE,
在△AEB和△KED中,
,
∴△AEB≌△KED(AAS),
∴DK=AB,AE=EK,EF为△ACK的中位线,
∴EF=CK=(DC﹣DK)=(DC﹣AB),
∵EG为△BCD的中位线,∴EG=BC,
又FG为△ACD的中位线,∴FG=AD,
∴EG+GF=(AD+BC),
∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,
∴EG+GF=6,FE=3,
∴△EFG的周长是6+3=1.
故答案为:1.
点评:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
10、1
【解析】
先求出四个小组回答的总题目数,然后除以4即可.
【详解】
解:这四个小组平均正确回答题目数
(8+1+16+10)≈1(道),
故答案为:1.
本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
11、
【解析】
根据函数图象与x轴的交点坐标,当y<0即图象在x轴下侧,求出即可.
【详解】
当y
相关试卷
这是一份河南郑州2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年陕西省商洛市名校数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年陕西省岐山县联考数学九上开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)