山西省太原市名校2024-2025学年九上数学开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)正十边形的每一个内角的度数为( )
A.B.C.D.
2、(4分)已知一个多边形的每一个外角都是,则该多边形是( )
A.十二边形B.十边形C.八边形D.六边形.
3、(4分)下列式子中属于最简二次根式的是( )
A.B.C.D.
4、(4分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:
则这四个人种成绩发挥最稳定的是( )
A.甲B.乙C.丙D.丁
5、(4分)若,则的值是
A.B.C.D.
6、(4分)计算( )
A.7B.-5C.5D.-7
7、(4分)如图,矩形的周长是28,点是线段的中点,点是的中点,的周长与的周长差是2(且),则的周长为( )
A.12B.14C.16D.18
8、(4分)若实数a,b,c满足,且,则函数的图象一定不经过
A.第四象限B.第三象限C.第二象限D.第一象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若是的小数部分,则的值是__________.
10、(4分)若方程+2=的解是正数,则m的取值范围是___.
11、(4分)经过多边形一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角是__度.
12、(4分)如图,在矩形纸片ABCD中,AB=6cm,BC=8cm,将矩形纸片折叠,使点B与点D重合,那么△DCF的周长是___cm.
13、(4分)已知的面积为27,如果,,那么的周长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,平面直角坐标系内有一△ABC,且点A(2,4),B(1,1),C(4,2).
(1)画出△ABC向下平移5个单位后的△A1B1C1;
(2)画出△A1B1C1先向左平移5个单位再作关于x轴对称的△A2B2C2,并直接写出点A2,B2的坐标.
15、(8分)把下列各式分解因式:
(1)x(x-y)2-2(y-x)2 (2)(x2+4)2-16x2
16、(8分)如图1,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.
(1)填空:△ABC≌△ ;AC和BD的位置关系是
(2)如图2,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.
(3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是 cm,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为 cm.
17、(10分)解下列方程
(1)(x﹣3)2=3﹣x;
(2)2x2+1=4x.
18、(10分)2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品.已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.
(1)每个笔袋、每筒彩色铅笔原价各多少元?
(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.若买x个笔袋需要y1元,买x筒彩色铅笔需要y2元.请用含x的代数式表示y1、y2;
(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)过多边形某个顶点的所有对角线,将这个多边形分成个三角形,这个多边形是________.
20、(4分)点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.
21、(4分)如图,将边长为4的正方形纸片沿折叠,点落在边上的点处,点与点重合, 与交于点,取的中点,连接,则的周长最小值是__________.
22、(4分)若直角三角形斜边上的高和中线分别是 5 cm 和 6 cm,则面积为________,
23、(4分)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.
25、(10分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.
已知:如图,在RtΔABC中,∠ABC=90°,0为AC的中点.
求作:四边形ABCD,使得四边形ABCD为矩形.
作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO;
②连接AD,CD,则四边形ABCD为矩形.
根据小丁设计的尺规作图过程.
(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:∴点O为AC的中点,
∴AO=CO.
又∵DO=BO,
∵四边形ABCD为平行四边形(__________)(填推理的依据).
∵∠ABC=90°,
∴ABCD为矩形(_________)(填推理的依据).
26、(12分)计算:+(2﹣π)0﹣()
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.
【详解】
解:∵一个十边形的每个外角都相等,
∴十边形的一个外角为360÷10=36°.
∴每个内角的度数为 180°-36°=144°;
故选:C.
本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360度.多边形的内角与它的外角互为邻补角.
2、B
【解析】
多边形的外角和是360°,依此可以求出多边形的边数.
【详解】
解:∵一个多边形的每个外角都等于36°,
∴多边形的边数为360°÷36°=1.
故选:B.
本题考查多边形的外角和定理.熟练掌握多边形的外角和定理:多边形的外角和是360°是解题的关键.
3、C
【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
解:A、被开方数含分母,故A错误;
B、被开方数含能开得尽方的因数或因式,故B错误;
C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;
D、被开方数含分母,故D错误;
故选:C.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
4、B
【解析】
方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
【详解】
解:∵S甲2,=0.035,S乙2=0.016,S,丙2=0.022,S,丁2=0.025,∴S乙2最小.
∴这四个人种成绩发挥最稳定的是乙.
故选B.
5、C
【解析】
∵,
∴b=a,c=2a,
则原式.
故选C.
6、C
【解析】
利用最简二次根式的运算即可得.
【详解】
故答案为 C
本题考查二次根式的运算,掌握同类二次根式的运算法则及分母有理化是解题的关键.
7、A
【解析】
设AB=n,BC=m,构建方程组求出m,n,利用勾股定理求出AC,利用三角形中位线定理求出OP即可解决问题.
【详解】
解:设AB=n,BC=m,
由题意:,
∴,
∵∠B=90°,
∴,
∵AP=PD=4,OA=OC=5,
∴OP=CD=3,
∴△AOP的周长为3+4+5=12,
故选A.
本题考查矩形的性质,勾股定理,三角形的中位线定理等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.
8、C
【解析】
先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.
【详解】
解:,且,
,,的正负情况不能确定,
,
函数的图象与y轴负半轴相交,
,
函数的图象经过第一、三、四象限.
故选C.
本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先估计的近似值,再求得m,代入计算即可.
【详解】
∵是的小数部分
∴m=-1
把m代入得
故答案为1.
此题主要考查了代数式,熟练掌握无理数是解题的关键.
10、m<3且m≠2.
【解析】
分式方程去分母转化为整式方程,由分式方程的解为正数,确定出m的范围即可.
【详解】
去分母得:m+2(x﹣1)=x+1,
解得:x=3﹣m,
由分式方程的解为正数,得到3﹣m>0,且3﹣m≠1,
解得:m<3且m≠2,
故答案为:m<3且m≠2.
此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.
11、1.
【解析】
从n边形的一个顶点可引的对角线条数应为:n-3,因为与它相邻的两个顶点和它本身的一个顶点均不能和其连接构成对角线。再用外角度数除几个角即可解答
【详解】
∵经过多边形的一个顶点有5条对角线,
∴这个多边形有5+3=8条边,
∴此正多边形的每个外角度数为360°÷8=1°,
故答案为:1.
此题考查正多边形的性质和外角,解题关键在于求出是几边形
12、1.
【解析】
根据翻转变换的性质得到BF=DF,根据三角形的周长公式计算即可.
【详解】
由翻转变换的性质可知,BF=DF,
则△DCF的周长=DF+CF+CD=BF+CF+CD=BC+CD=1cm,
故答案为:1.
本题考查的是翻转变换的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
13、1
【解析】
过点A作交BC于点E,先根据含1°的直角三角形的性质得出,设,则,根据的面积为27建立方程求出x的值,进而可求出AB,CD的长度,最后利用周长公式求解即可.
【详解】
过点A作交BC于点E,
∵,,
.
∵,
∴设,则.
∵的面积为27,
,
即,
解得或(舍去),
∴,
∴的周长为.
故答案为:1.
本题主要考查含1°的直角三角形的性质及平行四边形的周长和面积,掌握含1°的直角三角形的性质并利用方程的思想是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)见解析,点A2(-3,1),B2(-4,4).
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用平移的性质再结合轴对称图形的性质得出对应点位置进而得出答案.
【详解】
(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求,点A2(-3,1),B2(-4,4).
此题主要考查了作图--轴对称变换,关键是正确确定组成图形的关键点关于x轴的对称点位置.
15、 (1)(x-y)²(x-1);(1)(x+1)²(x-1)².
【解析】
(1)直接提取公因式(x-y)1,进而分解因式得出答案;
(1)直接利用平方差公式分解因式,进而结合完全平方公式分解因式即可.
【详解】
(1)x(x-y)1-1(y-x)1
=(x-y)1(x-1);
(1)(x1+4)1-16x1
=(x1+4-4x)(x1+4+4x)
=(x-1)1(x+1)1.
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
16、(1)ADC(SSS),AC⊥BD;(2)四边形ABCD是菱形,见解析;(3),2.
【解析】
(1)根据作法和三角形全等的判定方法解答,再根据到线段两端点距离相等的点在线段的垂直平分线上可得AC⊥BD;
(2)根据四条边都相等的四边形是菱形证明;
(3)设点B到AD的距离为h,然后根据菱形的面积等于底边×高和菱形的面积等于对角线乘积的一半列方程求解即可;再根据正方形的面积公式和菱形的面积求解.
【详解】
(1)由图可知,AB=AD,CB=CD,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(SSS),
∵AB=AD,
∴点A在BD的垂直平分线上,
∵CB=CD,
∴点C在BD的垂直平分线上,
∴AC垂直平分BD,
∴AC⊥BD;
(2)四边形ABCD是菱形.
理由如下:由(1)可得AB=AD,CB=CD,
∵AB=BC,
∴AB=BC=CD=DA,
∴四边形ABCD是菱形;
(3)设点B到AD的距离为h,
在菱形ABCD中,AC⊥BD,且AO=CO=4,BO=DO=3,
在Rt△ADO中,AD==5,
S菱形ABCD=AC•BD=AD•h,
即×8×6=5h,
解得h=,
设拼成的正方形的边长为a,则a2=×8×6,
解得a=2cm.
所以,点B到AD的距离是cm,拼成的正方形的边长为2cm.
本题考查了全等三角形的判定与性质,菱形的判定与性质,勾股定理,读懂题目信息,找出三角形全等的条件是解题的关键.
17、 (1)x1=3,x2=2;(2) ,
【解析】
试题分析:第小题用因式分解法,第小题用公式法.
试题解析:(1)原方程,
或,
,.
(2)原方程,
.
,.
点睛:一元二次方程的常用解法:直接开方法,公式法,配方法,因式分解法.选择合适的方法解题.
18、(1)每个笔袋原价14元,每筒彩色铅笔原价15元. (2)y1=12.6x.当不超过10筒时:y2=15x;当超过10筒时:y2=12x+30(3)买彩色铅笔省钱
【解析】
试题分析:(1)设每个笔袋原价x元,每筒彩色铅笔原价y元,根据“1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元”列出方程组求解即可;(2)根据题意直接用含x的代数式表示y1、y2;(3)把95分别代入(2)中的关系式,比较大小即可.
试题解析:
(1)设每个笔袋原价x元,每筒彩色铅笔原价y元,根据题意,得:
解得:
所以每个笔袋原价14元,每筒彩色铅笔原价15元.
(2)y1=14×0.9x=12.6x.
当不超过10筒时:y2=15x;
当超过10筒时:y2=12x+30.
(3)方法1:
∵95>10,
∴将95分别代入y1=12.6x和y2=12x+30中,得y1> y2.
∴买彩色铅笔省钱.
方法2:
当y1<y2时,有12.6x<12x+30,解得x<50,因此当购买同一种奖品的数量少于50件时,买笔袋省钱.
当y1=y2时,有12.6x=12x+30,解得x=50,因此当购买同一种奖品的数量为50件时,两者费用一样.
当y1>y2时,有12.6x>12x+30,解得x>50,因此当购买同一种奖品的数量大于50件时,买彩色铅笔省钱.
∵奖品的数量为95件,95>50,
∴买彩色铅笔省钱.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.
【详解】
解:设这个多边形是n边形,由题意得,n-2=7,
解得:n=9,
故答案为:9.
本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.
20、2
【解析】
试题解析:∵点M(a,-5)与点N(-1,b)关于x轴对称,
∴a=-1.b=5,
∴a+b=-1+5=2.
点睛:关于x轴、y轴对称的点的坐标特征:点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b).
21、
【解析】
如图,取CD中点K,连接PK,PB,则CK=2,由折叠的性质可得PG=PC,GH=DC=4,PQ=PK,BP=PG,QG=2,要求△PGQ周长的最小值,只需求PQ+PG的最小值即可,即求PK+PB的最小值,观察图形可知,当K、P、B共线时,PK+PB的值最小,据此根据勾股定理进行求解即可得答案.
【详解】
如图,取CD中点K,连接PK,PB,
则CK==2,
∵四边形ABCD是正方形,∴∠ABC=90°,
∵将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合, CG与EF交于点P,取GH的中点Q,
∴PG=PC,GH=DC=4,PQ=PK,
∴BP=PG,QG=2,
要求△PGQ周长的最小值,只需求PQ+PG的最小值即可,
即求PK+PB的最小值,
观察图形可知,当K、P、B共线时,PK+PB的值最小,
此时,PK+PB=BK=,
∴△PGQ周长的最小值为:PQ+PG+QG= PK+PB+QG=BK+QG=2+2,
故答案为2+2.
本题考查了正方形的性质,轴对称图形的性质,直角三角形斜边中线的性质,综合性较强,难度较大,正确添加辅助线,找出PQ+PG的最小值是解题的关键.
22、30cm1
【解析】
根据直角三角形的斜边上中线性质求出斜边长,然后根据三角形的面积解答即可.
【详解】
解:∵直角三角形斜边上的中线是6cm,
∴斜边长为11cm,
∴面积为:cm1,
故答案为:30cm1.
本题考查了直角三角形斜边上中线性质的应用,解此题的关键是根据性质求出斜边的长,注意:直角三角形斜边上的中线等于斜边的一半.
23、
【解析】
解:过A点向x轴作垂线,如图:
根据反比例函数的几何意义可得:四边形ABCD的面积为3,即|k|=3,
又∵函数图象在二、四象限,
∴k=﹣3,
即函数解析式为:y=﹣.
故答案为y=﹣.
本题考查反比例函数系数k的几何意义.
二、解答题(本大题共3个小题,共30分)
24、750米.
【解析】
设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,根据题意可得,实际比原计划少用2天完成任务,据此列方程求解.
解:设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,
由题意得,﹣=2,
解得:x=750,
经检验,x=750是原分式方程的解,且符合题意.
答:实际每天修建盲道750米.
“点睛”本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
25、 (1)作图如图所示,见解析(2)对角线互相平分的四边形是平行四边形, 有一个角是直角的平行四边形是矩形.
【解析】
(1)根据要求画出图形即可.
(2)根据有一个角是直角的平行四边形是矩形即可证明.
【详解】
(1)如图,矩形ABCD即为所求.
(2)理由:∵点O为AC的中点,
∴AO=CO
又∵DO=BO,
∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)
∵∠ABC=90°,
∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).
故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.
本题考查作图-复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识.
26、3.
【解析】
根据实数运算法则进行计算,特别要注意二次根式的运算法则.
【详解】
解:原式
=3
本题考核知识点:实数运算. 解题关键点:掌握实数运算法则,重点是二次根式运算法则.
题号
一
二
三
四
五
总分
得分
批阅人
选手
甲
乙
丙
丁
方差(环2)
0.035
0.016
0.022
0.025
2025届山西省大同市名校数学九上开学统考试题【含答案】: 这是一份2025届山西省大同市名校数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。