山西省朔州市名校2024-2025学年数学九上开学经典试题【含答案】
展开
这是一份山西省朔州市名校2024-2025学年数学九上开学经典试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是( )
A.用了5分钟来修车B.自行车发生故障时离家距离为1000米
C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟
2、(4分)关于反比例函数,下列说法中错误的是( )
A.它的图象分布在一、三象限
B.它的图象过点(-1,-3)
C.当x>0时,y的值随x的增大而增大
D.当x1
【解析】
试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.
试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,
联立两直线解析式得:,
解得:,
即交点坐标为(,),
∵交点在第一象限,
∴,
解得:m>1.
考点:一次函数图象与几何变换.
11、1
【解析】
根据分数指数幂的定义,转化为根式即可计算.
【详解】
==1.
故答案为1.
本题考查了分数指数幂,解题的关键是熟练掌握分数指数幂的定义,转化为根式进行计算,属于基础题.
12、2
【解析】
设平时每个粽子卖x元,根据题意列出分式方程,解之并检验得出结论.
【详解】
设平时每个粽子卖x元.
根据题意得:
解得:x=2
经检验x=2是分式方程的解
故答案为2.
本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.
13、3或
【解析】
分两种情况:①当∠EFC=90°,先判断出点F在对角线AC上,利用勾股定理求出AC,设BE=x,表示出CE,根据翻折变换的性质得到AF=AB,EF=BE,再根据Rt△CEF利用勾股定理列式求解;②当∠CEF=90°,判断四边形ABEF是正方形,根据正方形的性质即可求解.
【详解】
分两种情况:①当∠EFC=90°,如图1,
∵∠AFE=∠B=90°,∠EFC=90°,
∴点A、F、C共线,
∵矩形ABCD的边AD=4,
∴BC=AD=4,
在Rt△ABC中,AC=
设BE=x,则CE=BC-BE=4-x,
由翻折的性质得AF=AB=3,EF=BE=x,∴CF=AC-AF=5-3=2
在Rt△CEF中,EF2+CF2=CE2,
即x2+22=(4-x)2,
解得x=;
②当∠CEF=90°,如图2
由翻折的性质可知∠AEB=∠AEF=45°,
∴四边形ABEF是正方形,
∴BE=AB=3,
故BE的长为3或
此题主要考查矩形的折叠问题,解题的关键是根据图形进行分类讨论.
三、解答题(本大题共5个小题,共48分)
14、(1)A1(3,4)、B1(0,2);(2)四边形ABA1B1是平行四边形.
【解析】
(1)由于△OAB绕O点旋转180°得到△OA1B1,利用关于原点中心对称的点的坐标特征得到A1,B1的坐标,然后描点,再连结OB1、OA1和A1B1即可;
(2)根据中心对称的性质得OA=OA1,OB=OB1,则利用对角线互相平分得四边形为平行四边形可判断四边形ABA1B1为平行四边形.
【详解】
解:(1)如图图所示,△OA1B1即为所求,
A1(3,4)、B1(0,2);
(2)由图可知,OB=OB1=2、OA=OA1==5,
∴四边形ABA1B1是平行四边形.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.
15、(1)2;(2)
【解析】
(1)由平移的性质,即可得出平移距离;
(2)由平移的性质以及边长关系,可判定∠BAE=90°,利用勾股定理即可得解.
【详解】
(1)∵△DCE由△ABC平移而成
∴△ABC的平移距离为BC=2;
(2)由平移,得
BE=2BC=4,AB=AC=CE
∵等边△ABC
∴∠BAC=∠ACB=60°
∴∠CAE=∠CEA=30°
∴∠BAE=∠BAC+∠CAE=60°+30°=90°
∴.
此题主要考查等边三角形、平移的性质以及勾股定理的运用,熟练掌握,即可解题.
16、△BCD是直角三角形
【解析】
首先在Rt△BAD中,利用勾股定理求出BD的长,再根据勾股定理逆定理在△BCD中,证明△BCD是直角三角形.
【详解】
△BCD是直角三角形,
理由:在Rt△BAD中,
∵AB=AD=2,
∴BD==,
在△BCD中,BD2+CD2=()2+12=9,BC2=32=9,
∴BD2+CD2=BC2,
△BCD是直角三角形.
此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
17、(1)见详解;(2)见解析.
【解析】
(1)只用无刻度直尺作图过程如下:①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;
(2)先根据AF=EC,AF∥CE,判定四边形AECF是平行四边形,再根据AE=EC,即可得出平行四边形AECF是菱形.
【详解】
解:(1)如图所示,EO为∠AEC的角平分线;
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AFE=∠FEC,
又∵∠AEF=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF,
∴AF=EC,
∴四边形AECF是平行四边形,
又∵AE=EC,
∴平行四边形AECF是菱形.
本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.
18、(1)见解析;(2)3﹣3
【解析】
(1)先由四边形和是正方形证明,得出,再得出;
(2)连接BD,解题关键是利用垂直平分线的性质得出BD=BE,再由正方形的性质得出,即可得出结果.
【详解】
(1)证明:∵四边形是正方形
∴,
同理:,
∴
在和中,
∴
∴
在中,
∴
∴
∴
(2)连接,如图所示:
∵平分,由(1)知:
∴
∵正方形边长为
∴
∴
∴正方形的边长为:
本题考查了正方形的性质、全等三角形的判定和性质以及线段垂直平分线的性质等几何知识,特殊图形的特殊性质要熟练掌握.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
【详解】
方程两边都乘(x−3),得2−x−m=2(x−3)
∵原方程增根为x=3,
∴把x=3代入整式方程,得2−3−m=0,
解得m=−1.
故答案为:−1.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
20、2n,n2﹣1,n2+1.
【解析】
由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.
【详解】
解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
∴勾股数a=2n,b=n2﹣1,c=n2+1.
故答案为2n,n2﹣1,n2+1.
考点:勾股数.
21、.
【解析】
试题分析:点F与点C重合时,折痕EF最大,
由翻折的性质得,BC=B′C=10cm,
在Rt△B′DC中,B′D==8cm,
∴AB′=AD﹣B′D=10﹣8=2cm,
设BE=x,则B′E=BE=x,
AE=AB﹣BE=6﹣x,
在Rt△AB′E中,AE2+AB′2=B′E2,
即(6﹣x)2+22=x2,
解得x=,
在Rt△BEF中,EF=cm.
故答案是.
考点:翻折变换(折叠问题).
22、1+
【解析】
分析:首先根据三角形外角的性质可得∠B=∠BAD,根据等角对等边可得BD=AD=√55,然后利用勾股定理计算出CD长,进而可得BC长.
详解:∵∠B+∠DAB=∠ADC,∠ADC=2∠B,
∴∠B=∠BAD,
∴BD=AD=,
∵∠C=90°,
∴CD===1,
∴BC=+1.
故答案为.
点睛:此题主要考查了勾股定理,以及三角形外角的性质,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
23、、、
【解析】
根据一次函数的定义解答.
【详解】
依题意得:(k-1)(k-2)(k-2)+1=1或k=1,
所以(k-1)(k-2)(k-2)=1或k=1,
当k=2时,不是一次函数,
故k≠2,
所以,k-1=1或k-2=1或k=1,
所以k=1或k=2或k=1.
故答案是:1或1或2.
考查了一次函数的定义,一般地,形如y=kx+b(k≠1,k、b是常数)的函数,叫做一次函数.
二、解答题(本大题共3个小题,共30分)
24、(1)(m,m)(2)见解析(3)①0<k<6②(,-)
【解析】
(1)CF⊥AB,CR=FR,则∠RCB=45°,则RC=RB=RF,∠RBF=45°,即FB⊥x轴,即可求解;
(2)证明△AOC≌△OBF(HL),即可求解;
(3)①将点(-,0)代入y=kx+b即可求解;②求出点D(2,-1),证明△MNG≌△MHD(HL),即可求解.
【详解】
解:(1)y=-x+m,令x=0,则y=m,令y=0,则x=m,则∠ABO=45°,
故点A、B的坐标分别为:(0,m)、(m,0),则点C(m,0),
如图(1)作点C的对称轴F交AB于点R,则CF⊥AB,CR=FR,
则∠RCB=45°,则RC=RB=RF,
∴∠RBF=45°,即FB⊥x轴,
故点F(m,m);
(2)∵OC=BF=m,OB=OA,
∴△AOC≌△OBF(HL),
∴∠OAC=∠FOB,
∵∠OAC+∠AOE=90°,
∴∠OAC+∠AOE=90°,
∴∠AEO=90°,
∴OF⊥AC;
(3)①将点(-,0)代入y=kx+b得:
,解得:,
由一次函数图象知:k>0,
∵交点在第一象限,则,
解得:0<k<6;
②存在,理由:
直线OF的表达式为:y=x,直线AB的表达式为:y=-x+2,
联立上述两个表达式并解得:x=,故点M(,),
直线GM所在函数表达式中的k值为:,则直线MD所在直线函数表达式中的k值为-,
将点M坐标和直线DM表达式中的k值代入一次函数表达式并解得:
直线DM的表达式为:y=-x+4,故点D(2,-1),
过点M作x轴的垂线于点N,作x轴的平行线交过点G于y轴的平行线于点S,
过点G作y轴的平行线交过点Q与x轴的平行线于点T,
则,
∴△MNG≌△MHD(HL),
∴MD=MG,
则△GTQ≌△MSG,则GT=MS=GN=,TQ=SG=MN=,
故点Q(,-).
本题考查的是一次函数综合运用,涉及到待定系数法求一次函数解析式,一次函数图像的交点,全等三角形的判定与性质、点的对称性,其中(3)②,证明△MNG≌△MHD(HL),是本题的难点.
25、(1)(2)
【解析】
(1)根据概率公式计算即可;(2)先画树状图得出所有可能的结果,然后根据概率公式计算即可.
【详解】
(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;
(2)画树状图:
共有12种情况,其中符合题意的有8种,
∴
简单事件的概率.
26、(1)见解析;(2);(3)AD的值为或.
【解析】
(1)由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
(2)由cs∠DAC=,求出AE即可解决问题;
(3)分两种情形分别讨论求解即可.
【详解】
(1)①证明:如图1中,
∵四边形ABCD是矩形,
∴AD∥BC,OB=OD,
∴∠EDO=∠FBO,
在△DOE和△BOF中,
,
∴△DOE≌△BOF,
∴EO=OF,∵OB=OD,
∴四边形EBFD是平行四边形,
∵EF⊥BD,OB=OD,
∴EB=ED,
∴四边形EBFD是菱形.
(2)由题意可知:,,
∵,
∴,
∴,
∵AE≤AD,
∴,
∴x2≥1,
∵x>0,
∴x≥1.
即(x≥1).
(3)①如图2中,当点E在线段AD上时,ED=EO,则Rt△CED≌Rt△CEO,
∴CD=CO=AO=1,
在Rt△ADC中,AD=.
如图3中,当的E在线段AD的延长线上时,DE=DO,
∵DE=DO=OC,EC=CE,
∴Rt△ECD≌Rt△CEO,
∴CD=EO,
∵∠DAC=∠EAO,∠ADC=∠AOE=90°,
∴△ADC≌△AOE,
∴AE=AC,
∵EO垂直平分线段AC,
∴EA=EC,
∴EA=EC=AC,
∴△ACE是等边三角形,
∴AD=CD•tan30°=,
综上所述,满足条件的AD的值为或.
本题考查四边形综合题、矩形的性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份广西省玉林市名校2024-2025学年九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份甘肃省陇南市名校2024-2025学年数学九上开学经典试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山西省吕梁市名校数学九上开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。