山西省晋城市陵川县2025届数学九年级第一学期开学监测试题【含答案】
展开
这是一份山西省晋城市陵川县2025届数学九年级第一学期开学监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )
A.70°B.60°C.50°D.80°
2、(4分)下列调查中,适合进行普查的是( )
A.一个班级学生的体重
B.我国中学生喜欢上数学课的人数
C.一批灯泡的使用寿命
D.《新闻联播》电视栏目的收视率
3、(4分)下列各组线段中,能构成直角三角形的是( )
A.2cm,3cm,4cmB.1cm,1cm,cm
C.5cm,12cm,14cmD.cm,cm,cm
4、(4分)下列图形中,是轴对称图形,不是中心对称图形的是( )
A.B.
C.D.
5、(4分)下列图形中,对称轴的条数最少的图形是
A.B.C.D.
6、(4分)为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是( )
A.极差是3B.众数是4C.中位数40D.平均数是20.5
7、(4分)小颖同学准备用26元买笔和笔记本,已知一支笔2元,一本笔记本3元,他买了5本笔记本,最多还能买多少支笔?设他还能买支笔,则列出的不等式为( )
A.B.
C.D.
8、(4分)如图,是等腰直角三角形,是斜边,将绕点逆时针旋转后,能与重合,如果,那么的长等于( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组数据:3,0,,3,,1.这组数据的众数是_____________.
10、(4分)如图,在平面直角坐标系中,正方形的边长为2,点的坐标为.若直线与正方形有两个公共点,则的取值范围是____________.
11、(4分)如图,在ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为________ .
12、(4分)分解因式:___________.
13、(4分)两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:
图中的值是__________;
第_________天时,甲、乙两个车间加工零件总数相同.
15、(8分)如图,一张矩形纸片.点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点分别落在点处,
(1)若,则的度数为 °;
(2)若,求的长.
16、(8分)某数码专营店销售甲、乙两种品牌智能手机,这两种手机的进价和售价如下表所示:
(1)该店销售记录显示.三月份销售甲、乙两种手机共17部,且销售甲种手机的利润恰好是销售乙种手机利润的2倍,求该店三月份售出甲种手机和乙种手机各多少部?
(2)根据市场调研,该店四月份计划购进这两种手机共20部,要求购进乙种手机数不超过甲种手机数的,而用于购买这两种手机的资金低于81500元,请通过计算设计所有可能的进货方案.
(3)在(2)的条件下,该店打算将四月份按计划购进的20部手机全部售出后,所获得利润的30%用于购买A,B两款教学仪器捐赠给某希望小学.已知购买A仪器每台300元,购买B仪器每台570元,且所捐的钱恰好用完,试问该店捐赠A,B两款仪器一共多少台?(直接写出所有可能的结果即可)
17、(10分)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池深多少尺?”
18、(10分)(1)计算:
(2)先化简,再求值:已知,试求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形边,,沿折叠,使点与点重合,点的对应点为,将绕着点顺时针旋转,旋转角为.记旋转过程中的三角形为,在旋转过程中设直线与射线、射线分别交于点、,当时,则的长为_______.
20、(4分)抛物线,当随的增大而减小时的取值范围为______.
21、(4分)若关于x的分式方程有增根,则a的值为_______
22、(4分)化简:的结果是________.
23、(4分)甲乙两人在5次打靶测试中,甲成绩的平均数,方差,乙成绩的平均数,方差.教练根据甲、乙两人5次的成绩,选一名队员参加射击比赛,应选择__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在四边形中,,,,,,点从点出发,以的速度沿运动,点从点出发的同时,点从点出发,以的速度向点运动,当点到达点时,点也停止运动,设点、运动的时间为秒,从运动开始,当取何值时,?
25、(10分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.
26、(12分)申思同学最近在网上看到如下信息:
总书记明确指示,要重点打造北京非首都功能疏解集中承载地,在河北适合地段规划建设一座以新发展理念引领的现代新型城区.雄安新区不同于一般意义上的新区,其定位是重点承接北京疏解出的与去全国政治中心、文化中心、国际交往中心、科技创新中心无关的城市功能,包括行政事业单位、总部企业、金融机构、高等院校、科研院所等.右图是北京、天津、保定和雄安新区的大致交通图,其中保定、天津和雄安新区可近似看作在一条直线上.申思同学想根据图中信息求出北京和保定之间的大致距离.
他先画出如图示意图,其中AC=AB=BC=100,点C在线段BD上,他把CD近似当作40,来求AD的长.
请帮申思同学解决这个问题.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据题意尺规作图得到NM是AC的垂直平分线,故AD=CD,则∠C=∠DAC,再利用三角形的内角和求出∠BAC,故可求出∠BAD.
【详解】
根据题意尺规作图得到NM是AC的垂直平分线,
故AD=CD,
∴∠DAC=∠C=30°,
∵∠B=50°,∠C=30°
∴∠BAC=180°-50°-30°=100°,
∴∠BAD=∠BAC-∠DAC=70°.
故选A.
此题主要考查垂直平分线的性质,解题的关键是熟知三角形的内角和与垂直平分线的性质.
2、A
【解析】
根据具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查即可解答本题.
【详解】
A、调查一个班级学生的体重,人数较少,容易调查,因而适合普查,故选项正确;
B、调查我国中学生喜欢上数学课的人数,因为人数太多,不容易调查,因而适合抽查,故选项错误;
C、调查一批灯泡的使用寿命,调查具有普坏性,因而适合抽查,故选项错误;
D、调查结果不是很重要,且要普查要用大量的人力、物力,因而不适合普查,应用抽查,故选项错误.
故选A.
本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选择,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、B
【解析】
根据勾股定理的逆定理逐一进行判断即可得.
【详解】
解:A、22+32≠42,故不是直角三角形,故此选项不符合题意;
B、12+12=()2,故是直角三角形,故此选项符合题意;
C、52+122≠142,故不是直角三角形,故此选项不符合题意;
D、(,故不是直角三角形,故此选项不符合题意,
故选B.
本题考查了勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要验证两小边的平方和是否等于最长边的平方即可.
4、B
【解析】
根据轴对称图形的定义和中心对称图形的定义逐一判断即可.
【详解】
A选项是轴对称图形,也是中心对称图形,故本选项不符合题意;
B选项是轴对称图形,不是中心对称图形,故本选项符合题意;
C选项是轴对称图形,也是中心对称图形,故本选项不符合题意;
D选项是轴对称图形,也是中心对称图形,故本选项不符合题意.
故选B.
此题考查的是轴对称图形和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.
5、B
【解析】
把各个图形抽象成基本的几何图形,再分别找出它们的对称轴,圆有无数条对称轴,正方形有4条对称轴,等边三角形有三条对称轴;找出各个图形中所有的对称轴,再比较即可找出对称轴最少的图形.
【详解】
选项A、C、D中各有4条对称轴,选项B中只有1条对称轴,所以对称轴条数最少的图形是B.
故选:B.
本题主要考查的是轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
6、C
【解析】
极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.
【详解】
解:A、这组数据的极差是:60-25=35,故本选项错误;
B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
故选:C.
本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.
7、A
【解析】
设买x支笔,然后根据最多有26元钱列出不等式即可.
【详解】
设可买x支笔
则有:2x+3×5≤26,
故选A.
本题考查的是列一元一次不等式,解此类题目时要注意找出题目中不等关系即为解答本题的关键.
8、A
【解析】
解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3,
根据勾股定理得:,故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据众数的定义:一组数据中出现次数最多的数据解答即可.
【详解】
解:数据:2,0,,2,,1中,2出现的次数最多,所以这组数据的众数是2.
故答案为:2.
本题考查了众数的定义,属于基础概念题型,熟知众数的概念是关键.
10、﹣1<b<1
【解析】
当直线y=x+b过D或B时,求得b,即可得到结论.
【详解】
∵正方形ABCD的边长为1,点A的坐标为(1,1),∴D(1,3),B(3,1).
当直线y=x+b经过点D时,3=1+b,此时b=1.
当直线y=x+b经过点B时,1=3+b,此时b=﹣1.
所以,直线y=x+b与正方形有两个公共点,则b的取值范围是﹣1<b<1.
故答案为﹣1<b<1.
本题考查了一次函数图象上点的坐标特征,正方形的性质,关键是掌握待定系数法正确求出函数的解析式.
11、
【解析】
先由平行四边形对边相等得AD=BC, 作DE⊥AE,由题意可知△ADE为等腰直角三角形,根据勾股定理可以求出DE的长度,即AB和CD之间的距离.
【详解】
如图,过D作DE⊥AB交AB于E,
∵四边形ABCD为平行四边形,∴AD=BC=2,
△ADE为等腰直角三角形,
,
根据勾股定理得 ,
,
,
,
即AB和CD之间的距离为,
故答案为:
本题考查了平行四边形的性质,勾股定理,熟练利用勾股定理求直角三角形中线段长是解题的关键.
12、ab(a+b)(a﹣b).
【解析】
分析:先提公因式ab,再把剩余部分用平方差公式分解即可.
详解:a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).
点睛:此题考查了综合提公因式法和公式法因式分解,分解因式掌握一提二用,即先提公因式,再利用平方差或完全平方公式进行分解.
13、2
【解析】
两个面积相等的正方形无论它们各自位置如何,当其中一个正方形的顶点与另一个正方形对角线的交点重合时,此时的重合部分面积总是等于其中一个正方形面积的四分之一,据此求解即可.
【详解】
∵无论正方形位置关系如何,其重合部分面积不变,仍然等于其中一个正方形面积的四分之一,
∴重合部分面积=.
故答案为:2.
本题主要考查了正方形性质,熟练掌握相关概念是解题关键.
三、解答题(本大题共5个小题,共48分)
14、770 1
【解析】
(1)根据题意和函数图象中的数据可以求得m的值;
(2)根据题意和函数图象中的数据可以求得甲的速度、乙引入设备前后的速度,乙停工的天数,从而可以求得第几天,甲、乙两个车间加工零件总数相同.
【详解】
解:(1)由题意可得,
m=720+50=770,
故答案为:770;
(2)由图可得,
甲每天加工的零件数为:720÷9=10(个),
乙引入新设备前,每天加工的零件数为:10-(40÷2)=60(个),
乙停工的天数为:(200-40)÷10=2(天),
乙引入新设备后,每天加工的零件数为:(770-60×2)÷(9-2-2)=130(个),
设第x天,甲、乙两个车间加工零件总数相同,
10x=60×2+130(x-2-2),
解得,x=1,
即第1天,甲、乙两个车间加工零件总数相同,
故答案为:1.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
15、(1);(2)1
【解析】
(1)根据折叠可得∠BFG=∠GFB′,再根据矩形的性质可得∠DFC=40°,从而∠BFG=70°即可得到结论;
(2) 首先求出GD=9-=,由矩形的性质得出AD∥BC,BC=AD=9,由平行线的性质得出∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,证出∠DFG=∠DGF,由等腰三角形的判定定理证出DF=DG=,再由勾股定理求出CF,可得BF,再利用翻折不变性,可知FB′=FB,由此即可解决问题.
【详解】
(1)根据折叠可得∠BFG=∠GFB′,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DGF=∠BFG,∠ADF=∠DFC,
∵
∴∠DFC=40°
∴∠BFD=140°
∴∠BFG=70°
∴∠DGF=70°;
(2)∵AG=,AD=9,
∴GD=9-=,
∵四边形ABCD是矩形,
∴AD∥BC,BC=AD=9,
∴∠DGF=∠BFG,
由翻折不变性可知,∠BFG=∠DFG,
∴∠DFG=∠DGF,
∴DF=DG=,
∵CD=AB=4,∠C=90°,
∴在Rt△CDF中,由勾股定理得:,
∴BF=BC-CF=9-,
由翻折不变性可知,FB=FB′=,
∴B′D=DF-FB′=-=1.
本题是四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.
16、(1)售出甲手机12部,乙手机5部;可能的方案为:①购进甲手机12部,乙手机8部;②购进甲手机13部,乙手机7部;(3)该店捐赠A,B两款仪器一共9台或8台.
【解析】
(1)设售出甲手机x部,乙手机y部,根据销售甲、乙两种手机共17部,且销售甲种手机的利润恰好是销售乙种手机利润的2倍,可得出方程组,解出即可;
(2)设购进甲手机x部,则购进乙手机(20-x)部,根据购进乙种手机数不超过甲种手机数的,而用于购买这两种手机的资金低于81500元,可得出不等式组,解出即可得出可能的购进方案.
(3)先求出捐款数额,设捐赠甲仪器x台,乙仪器y台,列出二元一次方程,求出整数解即可.
【详解】
解:(1)设售出甲手机x部,乙手机y部,
由题意得,
解得:
答:售出甲手机12部,乙手机5部;
(2)设购进甲手机x部,则购进乙手机(20-x)部,
由题意得,
解得:12≤x<13,
∵x取整数,
∴x可取12,13,
则可能的方案为:
①购进甲手机12部,乙手机8部;
②购进甲手机13部,乙手机7部.
(3)①若购进甲手机12部,乙手机8部,此时的利润为:12×500+8×600=10800,
设捐赠甲仪器x台,乙仪器y台,
由题意得,300x+570y=10800×30%,
∵x、y为整数,
∴x=7,y=2,
则此时共捐赠两种仪器9台;
②若购进甲手机13部,乙手机7部,此时的利润为:13×500+7×600=10700,
设捐赠甲仪器x台,乙仪器y台,
由题意得,300x+570y=10700×30%,
∵x、y为整数,
∴x=5,y=3,
则此时共捐赠两种仪器8台;
综上可得该店捐赠A,B两款仪器一共9台或8台.
本题考查一元一次不等式组的应用、二元一次方程的应用及二元一次方程组的应用,解题关键是仔细审题,将实际问题转化为数学方程或不等式求解,难度较大.
17、1尺
【解析】
根据勾股定理列出方程,解方程即可.
【详解】
设这个水池深x尺,由题意得:
x2+52=(x+1)2,
解得:x=1.
答:这个水池深1尺.
本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.
18、 (1) (2) ;
【解析】
(1)根据二次根式的性质即可化简运算;
(2)先化简二次根式,再代入a,b即可求解.
【详解】
(1) 解: ;
(2)解:
当时,
原式.
此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质进行化简.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设AE=x=FC=FG,则BE=ED=8-x,根据勾股定理可得:x=,进而确定BE、EF的长,再由折叠性质可得∠BEF=∠DEF=∠BFE和∠DEF=∠NME=∠F',可证四边形BEMF'为平行四边形,进而得到平行四边形BEMF'为菱形,由菱形的性质可得EM=BE,最后由即可解答.
【详解】
解:如图:AE=x=FC=FG,则,
在中,有,即,
解得,
,,
由折叠的性质得,
,
,
,,
四边形为平行四边形,
由旋转的性质得:,
,
平行四边形为菱形,
,
.
本题考查了旋转的性质、勾股定理、矩形的性质、菱形的判定、平行四边形的判定等知识;考查知识点多,增加了试题的难度,其中证得四边形BEMF'是菱形是解答本题的关键.
20、(也可以)
【解析】
先确定抛物线的开口方向和对称轴,即可确定答案.
【详解】
解:∵的对称轴为x=1且开口向上
∴随的增大而减小时的取值范围为(也可以)
本题主要考查了二次函数增减性中的自变量的取值范围,其中确定抛物线的开口方向和对称轴是解答本题的关键.
21、3
【解析】
先根据分式方程的求解去掉分式方程的分母,再把增根x=5代入即可求出a的值.
【详解】
解
去分母得2-(x-a)=7(x-5)
把x=5代入得2-(5-a)=0,解得a=3
故填:3.
此题主要考查分式方程的求解,解题的关键是熟知分式方程增根的定义.
22、-2
【解析】
化简二次根式并去括号即可.
【详解】
解:
故答案为:-2
本题考查了二次根式的混合运算,计算较为简单,熟练掌握二次根式的化简是解题的关键.
23、甲
【解析】
根据根据方差的定义,方差越小数据越稳定,即可得出答案.
【详解】
解:因为甲、乙射击成绩的平均数一样,但甲的方差较小,说明甲的成绩比较稳定,因此推荐甲更合适.
本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数。
二、解答题(本大题共3个小题,共30分)
24、当时,
【解析】
首先判定当时,四边形PDCQ是平行四边形,然后利用其性质PD=QC,构建方程,即可得解.
【详解】
当时,四边形PDCQ是平行四边形,
此时PD=QC,
∴
∴
∴当时,.
此题主要考查利用平行四边形的性质构建方程,即可解题.
25、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析
【解析】
(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;
(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.
【详解】
(1),
将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,
∴乙射击的中位数,
∵乙射击的次数是10次,
∴=4.2;
(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.
此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.
26、见解析
【解析】
试题分析:作,构造直角三角形,先求出DE和AE的长度,再根据勾股定理求得AD的长度.
试题解析:
作.
∵,
∴为等边三角形.
∵,
∴,,
∴,
∴.
∵中,
.
∵,
∴.
∵中,
,
.
∵,
∴.
题号
一
二
三
四
五
总分
得分
月用电量(度)
25
30
40
50
60
户数
1
2
4
2
1
甲
乙
进价(元/部)
4300
3600
售价(元/部)
4800
4200
平均成绩/环
中位数/环
众数/环
方差
甲
a
7
7
1.2
乙
7
b
8
c
相关试卷
这是一份山西省晋城市陵川县多校2024-2025学年上学期第一次月考九年级数学试卷,共4页。
这是一份山西省晋城市陵川县多校2024-2025学年上学期第一次月考九年级数学试卷(无答案),共5页。试卷主要包含了将一元二次方程化成,已知,则等内容,欢迎下载使用。
这是一份2024年山西省晋城市陵川县多校中考三模数学试题,共12页。