|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省泰安市泰山区上高中学2025届数学九年级第一学期开学考试试题【含答案】
    立即下载
    加入资料篮
    山东省泰安市泰山区上高中学2025届数学九年级第一学期开学考试试题【含答案】01
    山东省泰安市泰山区上高中学2025届数学九年级第一学期开学考试试题【含答案】02
    山东省泰安市泰山区上高中学2025届数学九年级第一学期开学考试试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省泰安市泰山区上高中学2025届数学九年级第一学期开学考试试题【含答案】

    展开
    这是一份山东省泰安市泰山区上高中学2025届数学九年级第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若函数y=xm+1+1是一次函数,则常数m的值是( )
    A.0B.1C.﹣1D.﹣2
    2、(4分)若A(a,3),B(1,b)关于x轴对称,则a+b=( )
    A.2B.-2C.4D.-4
    3、(4分)如图,直线与直线交于点,则根据图象可知不等式的解集是
    A.B.C.D.
    4、(4分)已知空气单位体积质量是,将用科学记数法表示为( )
    A.B.C.D.
    5、(4分)△ABC与△DEF的相似比为,则△ABC与△DEF的面积比为( )
    A.B.C.D.
    6、(4分)如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是( )
    A.(31﹣1x)(10﹣x)=570B.31x+1×10x=31×10﹣570
    C.(31﹣x)(10﹣x)=31×10﹣570D.31x+1×10x﹣1x1=570
    7、(4分)用配方法解方程,配方正确的是()
    A.B.C.D.
    8、(4分)如图,点是菱形边上的一动点,它从点出发沿在路径匀速运动到点,设的面积为,点的运动时间为,则关于的函数图象大致为
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一个样本中共5个数据,其中前四个数据的权数分别为0.2,0.3,0.2,0.1,则余下的一个数据对应的权数为________.
    10、(4分)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为40,则OH的长等于_____.
    11、(4分)下列4个分式:①;②;③ ;④,中最简分式有_____个.
    12、(4分)在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)
    13、(4分)抛物线,当随的增大而减小时的取值范围为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
    (1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
    (2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
    15、(8分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.
    16、(8分)解下列各题:
    (1)计算:
    (2)解方程:(x+1)(x-1)=4x-1
    17、(10分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且 BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.
    (1)求证:△AOE≌△COF;
    (2)若AC平分∠HAG,求证:四边形AGCH是菱形.
    18、(10分)在中,,以斜边为底边向外作等腰,连接.
    (1)如图1,若.①求证:分;
    ②若,求的长.
    (2)如图2,若,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若x1,x2是方程x2+x−1=0的两个根,则x12+x22=____________.
    20、(4分)菱形的两条对角线长分别为3和4,则菱形的面积是_____.
    21、(4分)要使在实数范围内有意义,a 应当满足的条件是_____.
    22、(4分)如图,在平面直角坐标系中,等边三角形ABC的顶点B,C的坐标分别为(1,0),(3,0),过坐标原点O的一条直线分别与边AB,AC交于点M,N,若OM=MN,则点M的坐标为______________.
    23、(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连接DE,若DE=2.5 cm,AB=4 cm,则BC的长为_______cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图1,在平面直角坐标系中,直线与坐标轴分别相交于点,与直线相交于点.
    (1)求点的坐标;
    (2)若平行于轴的直线交于直线于点,交直线于点,交轴于点,且,求的值;
    (3)如图2,点是第四象限内一点,且,连接,探究与之间的位置关系,并证明你的结论.
    25、(10分)(实践探究)
    如图①,正方形的对角线相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.无论正方形绕点怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的,你能说明这是为什么吗?
    (拓展提升)
    如图②,在四边形中,,,联结.若,求四边线的面积.
    26、(12分)计算:(-2)(+1)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据一次函数解析式y=kx+b(k≠0,k、b是常数)的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.可得m+1=1,解方程即可.
    【详解】
    由题意得:m+1=1,
    解得:m=0,
    故选A.
    此题考查一次函数的定义,解题关键在于掌握其定义
    2、B
    【解析】
    根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求a、b的值,再求a+b的值.
    【详解】
    解:∵点A(a,3)与点B(1,b)关于X轴对称,
    ∴a=1,b=-3,
    ∴a+b=-1.
    故选:B.
    本题考查关于x轴对称的点的坐标,记住关于x轴对称的点,横坐标相同,纵坐标互为相反数是解题的关键.
    3、A
    【解析】
    根据函数图象交点右侧直线y=ax+b图象在直线:y=mx+n图象的上面,即可得出不等式ax+b>mx+n的解集.
    【详解】
    解:直线与直线交于点,
    不等式为:.
    故选:.
    此题主要考查了一次函数与不等式,利用数形结合得出不等式的解集是考试重点.
    4、C
    【解析】
    由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:=.
    故选:C.
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、D
    【解析】
    直接根据相似三角形的性质即可得出结论.
    【详解】
    解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,
    ∴△ABC与△DEF的面积比=()2=1:16,
    故答案为:D
    本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.
    6、A
    【解析】
    六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,
    故选A.
    7、C
    【解析】
    把常数项-4移项后,应该在左右两边同时加上一次项系数-2的一半的平方.
    【详解】
    解:把方程x2-2x-4=0的常数项移到等号的右边,得到x2-2x=4,
    方程两边同时加上一次项系数一半的平方,得到x2-2x+1=4+1,
    配方得(x-1)2=1.
    故选C.
    本题考查了解一元二次方程--配方法.配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    8、B
    【解析】
    设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
    【详解】
    设菱形的高为h,有三种情况:
    ①当P在AB边上时,如图1,
    y=AP•h,
    ∵AP随x的增大而增大,h不变,
    ∴y随x的增大而增大,
    故选项C不正确;
    ②当P在边BC上时,如图2,
    y=AD•h,
    AD和h都不变,
    ∴在这个过程中,y不变,
    故选项A不正确;
    ③当P在边CD上时,如图3,
    y=PD•h,
    ∵PD随x的增大而减小,h不变,
    ∴y随x的增大而减小,
    ∵P点从点A出发沿A→B→C→D路径匀速运动到点D,
    ∴P在三条线段上运动的时间相同,
    故选项D不正确,
    故选B.
    本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、0.1
    【解析】
    根据权数是一组非负数,权数之和为1即可解答.
    【详解】
    ∵一组数据共5个,其中前四个的权数分别为0.1,0.3,0.1,0.1,
    ∴余下的一个数对应的权数为1-0.1-0.3-0.1-0.1=0.1,
    故答案为:0.1.
    本题考查了权数的定义,掌握权数的定义是解决本题的关键.
    10、2
    【解析】
    首先求得菱形的边长,则OH是直角△AOD斜边上的中线,依据直角三角形的性质即可求解.
    【详解】
    AD=×40=1.
    ∵菱形ANCD中,AC⊥BD.
    ∴△AOD是直角三角形,
    又∵H是AD的中点,
    ∴OH=AD=×1=2.
    故答案是:2.
    本题考查了菱形的性质和直角三角形的性质,直角三角形斜边上的中线等于斜边的一半.
    11、①④
    【解析】
    根据最简分式的定义逐式分析即可.
    【详解】
    ①是最简分式;②=,不是最简分式 ;③=,不是最简分式;④是最简分式.
    故答案为2.
    本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.
    12、大于
    【解析】
    分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.
    【详解】
    ∵共有球:2+3+5=10个,
    ∴P白球==,P红球==,
    ∵>,
    ∴摸出白球可能性大于摸出红球可能性.
    故答案为:大于
    本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.
    13、(也可以)
    【解析】
    先确定抛物线的开口方向和对称轴,即可确定答案.
    【详解】
    解:∵的对称轴为x=1且开口向上
    ∴随的增大而减小时的取值范围为(也可以)
    本题主要考查了二次函数增减性中的自变量的取值范围,其中确定抛物线的开口方向和对称轴是解答本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利: 254元.
    【解析】
    试题分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;
    (2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果乙店盈利×x;列出函数解析式利用函数性质求得答案即可.
    解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;
    (2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,
    乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.
    ∵9×(10﹣x)+13x≥100,
    ∴x≥2,
    经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+1.
    ∵﹣2<0,
    ∴w随x增大而减小,
    ∴当x=3时,w值最大.
    甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+1=254(元).
    15、
    【解析】
    首先过点A作AD⊥BC,根据Rt△ADC和Rt△ABD的勾股定理分别求出CD和BD的长度,从而得出BC的长度
    【详解】
    过点A作AD⊥BC,则△ADC和△ABD为直角三角形
    ∵∠C=30° AC=4cm ∴AD=2cm CD=cm
    根据Rt△ABD的勾股定理可得:BD=cm
    ∴BC=BD+CD=()cm
    本题考查直角三角形的勾股定理,解题关键在于能够构造出直角三角形.
    16、(1)-2;(2)x1=0,x2=1
    【解析】
    (1)先化简各二次根式,然后合并同类二次根式即可;
    (2)整理后用因式分解法解答即可.
    【详解】
    (1)解:原式=
    =
    =
    =
    (2)解:化简得:x2-1x=0,∴x(x-1)=0,解得:x1=0,x2=1.
    本题考查了二次根式的加减运算及用因式分解法解一元二次方程.熟练掌握相关的计算方法是解答本题的关键.
    17、 (1)见解析;(2) 见解析.
    【解析】
    (1)先由四边形ABCD是平行四边形,得出OA=OC,OB=OD,则OE=OF,又∵∠AOE=∠COF,利用SAS即可证明△AOE≌△COF;
    (2)先证明四边形AGCH是平行四边形,再证明CG=AG,即可证明四边形AGCH是菱形.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD.
    ∵BE=DF,∴OE=OF.
    在△AOE与△COF中,
    ∴△AOE≌△COF(SAS).
    (2)由(1)得△AOE≌△COF,
    ∴∠OAE=∠OCF,∴AE∥CF.
    又∵AH∥CG,∴四边形AGCH是平行四边形.
    ∵AC平分∠HAG,∴∠HAC=∠GAC.
    ∵AH∥CG,∴∠HAC=∠GCA,
    ∴∠GAC=∠GCA,∴CG=AG,
    ∴□AGCH是菱形.
    本题考查全等三角形的判定与性质,菱形的判定,难度适中,利用SAS证明△AOE≌△COF是解题关键.
    18、(1)①见详解,②1;(2)-
    【解析】
    (1)①过点P作PM⊥CA于点M,作PN⊥CB于点N,易证四边形MCNP是矩形,利用已知条件再证明△APM≌△BPN,因为PM=PN,所以CP平分∠ACB;
    ②由题意可证四边形MCNP是正方形,
    (2)如图,以AC为边作等边△AEC,连接BE,过点E作EF⊥BC于F,由”SAS“可证△ABE≌△APC,可得BE=CP=5,由直角三角形的性质和勾股定理可求BC的长.
    【详解】
    证明:(1)①如图1,过点P作PM⊥CA于点M,作PN⊥CB于点N,
    ∴∠PMC=∠PNC=90°,
    ∵∠ACB=90°
    ∴四边形MCNP是矩形,
    ∴∠MPN=90°,
    ∵PA=PB,∠APB=90°,
    ∴∠MPN−∠APN=∠APB−∠APN,
    ∴∠APM=∠NPB,
    ∵∠PMA=∠PNB=90°,
    在△APM和△BPN中,

    ∴△APM≌△BPN(AAS),
    ∴PM=PN,
    ∴CP平分∠ACB;
    ②∵四边形MCNP是矩形,且PN=PM,
    ∴四边形MCNP是正方形,
    ∴PN=CN=PM=CM
    ∴PC=PN=6,
    ∴PN=6=CN=CM=MP
    ∴AM=CM−AC=1
    ∵△APM≌△BPN
    ∴AM=BN,
    ∴BC=CN+BN=6+AM=6+1=1.
    (2)如图,以AC为边作等边△AEC,连接BE,过点E作EF⊥BC于F,
    ∵△AEC是等边三角形
    ∴AE=AC=EC=5,∠EAC=∠ACE=60°,
    ∵△APB是等腰三角形,且∠APB=60°
    ∴△APB是等边三角形,
    ∴∠PAB=60°=∠EAC,AB=AP,
    ∴∠EAB=∠CAP,且AE=AC,AB=AP,
    ∴△ABE≌△APC(SAS)
    ∴BE=CP=5,
    ∵∠ACE=60°,∠ACB=90°,
    ∴∠ECF=30°,
    ∴EF=EC=,FC=EF=,
    ∵BF=,
    ∴BC=BF−CF=-
    本题是四边形综合题,考查了矩形判定和性质,正方形的判定和性质,全等三角形的判定和性质,等边三角形的性质,直角三角形的性质,角平分线的性质等知识,添加恰当辅助线构造全等三角形是本题的难点.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3
    【解析】
    先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可.
    【详解】
    ∵x1,x2是方程x2+x−1=0的两个根,
    ∴x1+x2=−=−=−1, x1•x2===−1,
    ∴x12+x22=(x1+x2)2−2x1⋅x2=(−1)2−2×(−1)=1+2=3.
    故答案是:3.
    本题考查根与系数的关系,解题的关键是掌握根与系数的关系.
    20、1
    【解析】
    根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.
    【详解】
    解:∵菱形的两条对角线长分别为3和4,
    ∴菱形的面积=×3×4=1.
    故答案为:1.
    本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.
    21、a⩽3.
    【解析】
    根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.
    【详解】
    ∵在实数范围内有意义,
    ∴3−a⩾0,
    解得a⩽3.
    故答案为:a⩽3.
    此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.
    22、 (,)
    【解析】
    ∵B(1,0),C(3,0),
    ∴OB=1,OC=3,
    ∴BC=2,
    过点N作EN∥OC交AB于E,过点A作AD⊥BC于D,NF⊥BC于F,
    ∴∠ENM=∠BOM,
    ∵OM=NM,∠EMN=∠BMO,
    ∴△ENM≌△BOM,
    ∴EN=OB=1,
    ∵△ABC是正三角形,
    ∴AD=,BD=BC=1,
    ∴OD=2,
    ∴A(2,),
    ∴△AEN也是正三角形,
    ∴AN=EN=1,
    ∴AN=CN,
    ∴N,
    ∴M(,)
    故答案为(,)
    23、9
    【解析】
    根据题意先证△ABD≌△GBD,得出AB=BG,D为AG中点,再由E为AC中点,根据中位线的性质即可求解.
    【详解】
    ∵BF平分∠ABC,∴∠ABD=∠GBD,
    ∵AG⊥BF,∴∠BDG=∠BDA,
    又BD=BD,∴△ABD≌△GBD
    ∴BG=AB=4cm,AD=GD,
    故D为AG中点,又E为AC中点
    ∴GC=2DE=5cm,
    ∴BC=BG+GC=9cm.
    此题主要考查线段的长度求解,解题的关键是熟知全等三角形的判定与中位线的性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)或;(3),理由见解析。
    【解析】
    (1)联立两函数即可求出C点坐标;
    (2)根据题意写出M,D,E的坐标,再根据即可列式求解;
    (3)过作,交的延长线于,设交于点,得到得为等腰直角三角形,再证明,故可得,即可求解.
    【详解】
    (1)联立,解得

    (2)
    依题意得
    解得或
    (3),理由如下:
    过作,交的延长线于,设交于点
    易得为等腰直角三角形,
    易得
    此题主要考查一次函数的应用,解题的关键是根据题意作出辅助线、熟知一次函数的图像及全等三角形的判定与性质.
    25、(1)见解析;(2)18
    【解析】
    (1)由正方形的性质可得,,,由“”可证,可得,即可求解;
    (2)过点作于点,于点,由“”可得,可得,,可得,由正方形的面积公式可求四边线的面积.
    【详解】
    解:(1)四边形是正方形
    ,,
    ,且,

    两个正方形重叠部分的面积正方形的,
    (2)过点作于点,于点,
    ,,
    ,且
    ,且,
    ,,

    四边形是矩形,且
    四边形是正方形

    本题考查了旋转的性质,全等三角形的性质,正方形的性质,等腰直角三角形,添加恰当辅助线构造全等三角形是本题的关键.
    26、1
    【解析】
    先把化简得到原式=2(-1)(+1),然后利用平方差公式计算.
    【详解】
    解:原式=(2-2)(+1)
    =2(-1)(+1)
    =2(5-1)
    =1.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    题号





    总分
    得分
    批阅人
    A种水果/箱
    B种水果/箱
    甲店
    11元
    17元
    乙店
    9元
    13元
    相关试卷

    山东省泰安市泰山区大津口中学2024年九年级数学第一学期开学统考模拟试题【含答案】: 这是一份山东省泰安市泰山区大津口中学2024年九年级数学第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省泰安市大津口中学2024年九年级数学第一学期开学统考试题【含答案】: 这是一份山东省泰安市大津口中学2024年九年级数学第一学期开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省泰安市泰山区数学九上开学综合测试试题【含答案】: 这是一份2024年山东省泰安市泰山区数学九上开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map