年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省郓城第一初级中学2025届九上数学开学达标测试试题【含答案】

    山东省郓城第一初级中学2025届九上数学开学达标测试试题【含答案】第1页
    山东省郓城第一初级中学2025届九上数学开学达标测试试题【含答案】第2页
    山东省郓城第一初级中学2025届九上数学开学达标测试试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省郓城第一初级中学2025届九上数学开学达标测试试题【含答案】

    展开

    这是一份山东省郓城第一初级中学2025届九上数学开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在菱形中,对角线交于点,,则菱形的面积是( )
    A.18B.C.36D.
    2、(4分)在Rt△ABC中,∠ACB=90°,AB=6cm,D为AB的中点,则CD等于( )
    A.B.C.D.
    3、(4分)若分式有意义,则实数的取值范围是( )
    A.x=2B.x=-2C.x≠2D.x≠-2
    4、(4分)如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )
    A.16B.12C.24D.18
    5、(4分)在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )
    A.5B.7C.9D.11
    6、(4分)下列各图象中,不是y关于x的函数图象的是( )
    A.B.C.D.
    7、(4分)不等式组的解集在数轴上可表示为( )
    A.B.C.D.
    8、(4分)如图,在直线l上有三个正方形m、q、n,若m、q的面积分别为5和11,则n的面积( )
    A.4B.6C.16D.55
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)分式当x __________时,分式的值为零.
    10、(4分)已知正方形的边长为1,如果将向量的运算结果记为向量,那么向量的长度为______
    11、(4分)计算:
    12、(4分)如图,△ABC中,∠ACB=90°,CD是斜边上的高,AC=4,BC=3,则CD=______.
    13、(4分)一次函数的图象与轴交于点________;与轴交于点______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)有一次,小明坐着轮船由A点出发沿正东方向AN航行,在A点望湖中小岛M,测得∠MAN=30°,航行100米到达B点时,测得∠MBN=45°,你能算出A点与湖中小岛M的距离吗?
    15、(8分)如图1,在平行四边形中,(),垂足为,所在直线,垂足为.
    (1)求证:
    (2)如图2,作的平分线交边于点,与交于点,且,求证:
    16、(8分)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示
    (1)求甲车从A地到达B地的行驶时间;
    (2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;
    (3)求乙车到达A地时甲车距A地的路程.
    17、(10分)一个多边形的外角和是内角和的,求这个多边形的边数.
    18、(10分)端午节假期,某商场开展促销活动,活动规定:若购买不超过100元的商品,则按全额交费;若购买超过100元的商品,则超过100元的部分按8折交费.设商品全额为x元,交费为y元.
    (1)写出y与x之间的函数关系式.
    (2)某顾客在-一次消费中,向售货员交纳了300元,那么在这次消费中,该顾客购买的商品全额为多少元?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中直线y=−x+10与x轴,y轴分别交于A.B两点,C是OB的中点,D是线段AB上一点,若CD=OC,则点D的坐标为___
    20、(4分)一种什锦糖由价格为12元/千克,18元/千克的两种糖果混合而成,两种糖果的比例是2:1,则什锦糖的每千克的价格为_____________
    21、(4分)如图,某港口P位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12n mile,“长峰”号每小时航行16n mile,它们离开港东口1小时后,分别到达A,B两个位置,且AB=20n mile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是________.
    22、(4分)如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点逆时针旋转50º到△的位置,则∠= _________度.
    23、(4分)一次函数的图象与y轴的交点坐标________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,的对角线、相交于点,.
    (1)求证:;
    (2)若,连接、,判断四边形的形状,并说明理由.
    25、(10分)如图,在平行四边形ABCD中,BE平分∠ABC,且与AD边交于点E,∠AEB=45°,证明:四边形ABCD是矩形.
    26、(12分)如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).
    (1)求这个一次函数的表达式.
    (2)求该函数图象与坐标轴围成的三角形的面积.
    (3)判断点C(2,2)是在直线AB的上方(右边)还是下方(左边).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先求出菱形对角线的长度,再根据菱形的面积计算公式求解即可.
    【详解】
    ∵四边形ABCD是菱形,
    ∴BD=2BO,AC=2AO,
    ∵AO=3,BO=3,
    ∴BD=6,AC=6,
    ∴菱形ABCD的面积=×AC×BD=×6×6=18.
    故选B.
    此题主要考查菱形的对角线的性质和菱形的面积计算.
    2、C
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可得CD= AB.
    【详解】
    解:∵∠ACB=90°,D为AB的中点,
    ∴CD= AB= ×6=3cm.
    故选:C.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
    3、D
    【解析】
    根据分式有意义分母不能为零即可解答.
    【详解】
    ∵分式有意义,
    ∴x+2≠0,
    ∴x≠-2.
    故选:D.
    本题考查了分式有意义的条件,分式分母不能为零是解题的关键点.
    4、A
    【解析】
    由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.
    【详解】
    解:∵四边形ABCD是菱形,∴AB=BC.
    ∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.
    故选A.
    本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
    5、B
    【解析】
    试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.
    6、B
    【解析】
    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.
    【详解】
    解:由函数的定义可知,
    每一个给定的x,都有唯一确定的y值与其对应的才是函数,
    故选项A、C、D中的函数图象都是y关于x的函数,B中的不是,
    故选:B.
    主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    7、A
    【解析】
    试题分析:解不等式x+2>2得:x>﹣2;解不等式得:x≤2,所以次不等式的解集为:﹣2<x≤2.故选A.
    考点:2.在数轴上表示不等式的解集;2.解一元一次不等式组.
    8、C
    【解析】
    运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.
    【详解】
    解:由于m、q、n都是正方形,所以AC=CD,∠ACD=90°;
    ∵∠ACB+∠DCE=∠ACB+∠BAC=90°,
    ∴∠BAC=∠DCE,且AC=CD,∠ABC=∠DEC=90°
    ∴△ACB≌△DCE(AAS),
    ∴AB=CE,BC=DE;
    在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
    即Sn=Sm+Sq=11+5=16,
    ∴正方形n的面积为16,
    故选C.
    本题主要考查对全等三角形和勾股定理的综合运用,关键是证明三角形全等.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、= -3
    【解析】
    根据分子为0,分母不为0时分式的值为0来解答.
    【详解】
    根据题意得:
    且x-3 0
    解得:x= -3
    故答案为:= -3.
    本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.
    10、1
    【解析】
    利用向量的三角形法则直接求得答案.
    【详解】
    如图:
    ∵-==且||=1,
    ∴||=1.
    故答案为:1.
    此题考查了平面向量,属于基础题,熟记三角形法则即可解答.
    11、2.
    【解析】
    根据运算法则进行运算即可.
    【详解】
    原式==2
    此是主要考查二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    12、2.4
    【解析】
    在Rt中,由勾股定理可求得AB的长,进而可根据三角形面积的不同表示方法求出CD的长.
    【详解】
    解:Rt中,AC=4m,BC=3m
    AB=m

    ∴m=2.4m
    故答案为2.4 m
    本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.
    13、
    【解析】
    分别令x,y为0,即可得出答案.
    【详解】
    解:∵当时,;当时,
    ∴一次函数的图象与轴交于点,与轴交于点.
    故答案为:;.
    本题考查的知识点是一次函数与坐标轴的交点坐标,比较简单基础.
    三、解答题(本大题共5个小题,共48分)
    14、A点与湖中小岛M的距离为100+100米;
    【解析】
    作MC⊥AN于点C,设AM=x米,根据∠MAN=30°表示出MC= m,根据∠MBN=45°,表示出BC=MC=m然后根据在Rt△AMC中有AM =AC+MC列出法方程求解即可.
    【详解】
    作MC⊥AN于点C,
    设AM=x米,
    ∵∠MAN=30°,
    ∴MC=m,
    ∵∠MBN=45°,
    ∴BC=MC=m
    在Rt△AMC中,
    AM=AC+MC,
    即:x=( +100) +() ,
    解得:x=100+100 米,
    答:A点与湖中小岛M的距离为100+100米。
    此题考查勾股定理的应用,解题关键在于作辅助线
    15、(1)详见解析;(2)详见解析
    【解析】
    (1)利用HL证明,可得出;
    (2)延长到,使得,先证出,再证明,从而得到,所以证出.
    【详解】
    (1)证明:
    ∵平行四边形

    又∵
    ∴(平行线之间垂直距离处处相等)
    ∴()

    (2)延长到,使得
    ∵,且
    ∴ ∴




    ∵平分

    在中,





    本题考查了平行四边形的性质和全等三角形的判定和性质,添加恰当的辅助线构建全等三角形是解题的关键.
    16、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.
    【解析】
    试题分析:(1)根据题意列算式即可得到结论;
    (2)根据题意列方程组即可得到结论;
    (3)根据题意列算式即可得到结论.
    试题解析:(1)300÷(180÷1.5)=2.5(小时).
    答:甲车从A地到达B地的行驶时间是2.5小时;
    (2)设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);
    (3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米.
    答:乙车到达A地时甲车距A地的路程是175千米.
    考点:一次函数的应用;分段函数.
    17、七边形.
    【解析】
    分析:多边形的内角和定理为(n-2)×180°,多边形的外角和为360°,根据题意列出方程求出n的值.
    详解:根据题意可得: 解得:
    点睛:本题主要考查的是多边形的内角和公式以及外角和定理,属于基础题型.明白这两个公式是解题的关键.
    18、(1);(2)该顾客购买的商品全额为350元.
    【解析】
    (1)根据题意分段函数,即当自变量x≤100和x>100两种情况分别探索关系式,
    (2)根据金额,判断符合哪个函数,代入求解即可.
    【详解】
    (1)
    (2)由题意得,
    解得.
    答:该顾客购买的商品全额为350元.
    考查根据实际问题求一次函数的关系式、分段函数关系式的探索,以及代入求值等知识,体会函数的意义.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4,8)
    【解析】
    由解析式求得B的坐标,加入求得C的坐标,OC=5,设D(x,-x+10),根据勾股定理得出x +(x-5)=25,解得x=4,即可求得D的坐标.
    【详解】
    由直线y=−x+10可知:B(0,10),
    ∴OB=10,
    ∵C是OB的中点,
    ∴C(0,5),OC=5,
    ∵CD=OC,
    ∴CD=5,
    ∵D是线段AB上一点,
    ∴设D(x,-x+10),
    ∴CD=

    解得x =4,x =0(舍去)
    ∴D(4,8),
    故答案为:(4,8)
    此题考查一次函数与平面直角坐标系,勾股定理,解题关键在于利用勾股定理进行计算
    20、14元/千克
    【解析】
    依据这种什锦糖总价除以总的千克数,即可得到什锦糖每千克的价格.
    【详解】
    解:由题可得,这种什锦糖的价格为:,
    故答案为:14元/千克.
    本题主要考查了算术平均数,对于n个数x1,x2,…,xn,则就叫做这n个数的算术平均数.
    21、南偏东30°
    【解析】
    直接得出AP=12 n mile,PB=16 n mile,AB=20 n mile,利用勾股定理逆定理以及方向角得出答案.
    【详解】
    如图,
    由题意可得:AP=12 n mile,PB=16 n mile,AB=20 n mile,
    ∵122+162=202,
    ∴△APB是直角三角形,
    ∴∠APB=90°,
    ∵“远洋”号沿着北偏东60°方向航行,
    ∴∠BPQ=30°,
    ∴“长峰”号沿南偏东30°方向航行;
    故答案为南偏东30°.
    此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.
    22、10
    【解析】
    根据旋转的性质找到对应点、对应角进行解答.
    【详解】
    ∵△ABC绕点A逆时针旋转50°得到△AB′C′,
    ∴∠BAB′=50°,
    又∵∠BAC=70°,
    ∴∠CAB′=∠BAC-∠BAB′=1°.
    故答案是:1.
    本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点--旋转中心;②旋转方向;③旋转角度.
    23、 (0,-2)
    【解析】
    根据一次函数与y轴的交点得横坐标等于0,将x=0代入y=x-2,可得y的值,从而可以得到一次函数y=x-2的图象与y轴的交点坐标.
    【详解】
    将x=0代入y=x−2,可得y=−2,
    故一次函数y=x−2的图象与y轴的交点坐标是(0,−2).
    故答案为:(0,-2)
    此题考查一次函数图象上点的坐标特征,解题关键在于一次函数与y轴的交点得横坐标等于0
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)矩形,理由见解析;
    【解析】
    (1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;
    (2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴BO=DO,AO=OC,
    ∵AE=CF,
    ∴AO-AE=OC-CF,
    即:OE=OF,
    在△BOE和△DOF中,
    ∴△BOE≌△DOF(SAS);
    (2)矩形,
    证明:∵BO=DO,OE=OF,
    ∴四边形BEDF是平行四边形,
    ∵BD=EF,
    ∴平行四边形BEDF是矩形.
    此题考查平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解题的关键.
    25、见解析
    【解析】
    利用平行线性质得到∠EBC=∠AEB=45°,因为BE平分∠ABC,所以∠ABE=∠EBC=45°,所以∠ABC=90°,所以四边形ABCD是矩形
    【详解】
    ∵AD∥BC
    ∴∠EBC=∠AEB=45°
    ∵BE平分∠ABC
    ∴∠ABE=∠EBC=45°
    ∴∠ABC=∠ABE +∠EBC =90°
    又∵四边形ABCD是平行四边形
    ∴四边形ABCD是矩形
    本题主要考查角平分线性质、平行四边形性质、矩形的判定定理,本题关键在于能够证明出∠ABC是直角
    26、 (1) y=﹣x+3;(2);(3) 在直线AB的上方.
    【解析】
    (1)设一次函数解析式为y=kx+b,把A、B两点坐标分别代入利用待定系数法进行求解即可得;
    (2)由(1)中的解析式求得直线与x轴、y轴的交点坐标,利用三角形公式进行计算即可得;
    (3)把x=2代入解析式,通过计算进行判断即可得.
    【详解】
    (1)设一次函数解析式为y=kx+b,
    把A(6,﹣3)与B(﹣2,5)代入得:,
    解得:,
    则一次函数解析式为y=﹣x+3;
    (2)在y=﹣x+3中,令x=0,则有y=3,
    令y=0,则有-x+3=0,x=3,
    所以函数y=﹣x+3图象与坐标轴的交点坐标分别为(0,3)和(3,0),
    所以图象与坐标轴围成的三角形的面积是;
    (3)当x=2时,y=﹣2+3=1,所以点(2,2)在直线AB的上方.
    本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、一次函数图象与坐标轴围成的三角形面积等,熟练掌握待定系数法是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    山东省新泰市宫里镇初级中学2025届九上数学开学达标检测试题【含答案】:

    这是一份山东省新泰市宫里镇初级中学2025届九上数学开学达标检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省青州市吴井初级中学2025届数学九上开学达标检测试题【含答案】:

    这是一份山东省青州市吴井初级中学2025届数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省菏泽郓城县联考2024年九上数学开学质量检测试题【含答案】:

    这是一份山东省菏泽郓城县联考2024年九上数学开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map