山东省泰安市、新泰市2025届数学九上开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围是( )
A.k≥1B.k≤4C.k<1D.k≤1
2、(4分)矩形各内角的平分线能围成一个( )
A.矩形B.菱形C.等腰梯形D.正方形
3、(4分)如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是( )
A. B. C. D.
4、(4分)下列从左到右的变形,是因式分解的是( )
A.(x﹣y)(x+ y)= x2﹣y2B.2x2+4xy = 2x(x+2y)
C.x2+2x+3 = x(x+2)+3D.(m﹣2)2 = m2﹣4m+4
5、(4分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是( )
A.x>0B.x<0C.x>-1D.x>2
6、(4分)某校计划修建一条500米长的跑道,开工后每天比原计划多修15米,结果提前2天完成任务.如果设原计划每天修x米,那么根据题意可列出方程( )
A.=2B.=2
C.=2D.=2
7、(4分)平行四边形所具有的性质是( )
A.对角线相等B.邻边互相垂直
C.两组对边分别相等D.每条对角线平分一组对角
8、(4分)为了解某公司员工的年工资情况,小明随机调查了10位员工,其年工资如下单位:万元:4,4,4,5,6,6,7,7,9,则下列统计量中,能合理反映该公司员工年工资中等水平的是
A.平均数B.中位数C.众数D.方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线经过点,则关于的不等式的解集是______.
10、(4分)已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.
11、(4分)点A(0,3)向右平移2个单位长度后所得的点A’的坐标为_____.
12、(4分)某种感冒病毒的直径是0.000 000 12米,用科学记数法表示为 米.
13、(4分)如图,在第个中,:在边取一点,延长到,使,得到第个;在边上取一点,延长到,使,得到第个,…按此做法继续下去,则第个三角形中以为顶点的底角度数是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点.
(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.
(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.
(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,直接写出结论;如果变化,请直接写出EF,BE,CF之间的数量关系.
15、(8分)如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若DC=2,AC=4,求OE的长.
16、(8分)先化简,再求值:,其中- 1.
17、(10分)如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE=3,求BC的长.
18、(10分)(1)判断下列各式是否成立(在括号内划√或×)
①( );②( );③( );④.( )
(2)根据(1)中的结果,将你发现的规律,用含有自然数()的式子表示出来;
(3)请说明你所发现的规律的正确性.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知(﹣1,y1)(﹣2,y2)(, y3)都在反比例函数y=﹣的图象上,则y1 、y2 、 y3的大小关系是________ .
20、(4分)已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.
21、(4分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如,3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12…,因此3,5,7,8…都是“智慧数”在正整数中,从1开始,第2018个智慧数是_____.
22、(4分)已知y=++9,则(xy-64)2的平方根为______.
23、(4分)若a+b=4,a﹣b=1,则(a+2)2﹣(b﹣2)2的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
25、(10分)某商品的进价为每件 30 元,现在的售价为每件 40 元,每星期可卖出 150 件.市场调查 发现:如果每件的售价每涨 1 元(售价每件不能高于 45 元),那么每星期少卖 10 件,设每 件涨价 x 元( x 为非负整数),每星期的销量为 y 件.
(1)写出 y 与 x 的关系式;
(2)要使每星期的利润为 1560 元,从有利于消费者的角度出发,售价应定为多少?
26、(12分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:
(1)直接写出y甲,y乙关于x的函数关系式;
(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由一元二次方程有实数根可得△=b2﹣4ac=22﹣4×k×1≥0,解不等式即可.
【详解】
∵△=b2﹣4ac=22﹣4×k×1≥0,
解得:k≤1,
故选D.
【点评】
本题考查了一元二次方程根的判别式的应用,解此类题时切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
2、D
【解析】
根据矩形的性质及角平分线的性质进行分析即可.
【详解】
矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°
又知两条角平分线与矩形的一边构成等腰直角三角形,
所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.
故选D.
此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角
3、D
【解析】
根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.
【详解】
解:∵正方形ABCD的边长为1,
∴AB=BC=CD=DA=1
由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,
∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,
故选D.
此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.
4、B
【解析】
根据因式分解的概念逐一进行分析即可.
【详解】
A. (x﹣y)(x+ y)= x2﹣y2,从左到右是整式的乘法,故不符合题意;
B. 2x2+4xy = 2x(x+2y),符合因式分解的概念,故符合题意;
C. x2+2x+3 = x(x+2)+3,不符合因式分解的概念,故不符合题意;
D. (m﹣2)2 = m2﹣4m+4,从左到右是整式的乘法,故不符合题意,
故选B.
本题考查了因式分解的概念,熟练掌握因式分解是指将一个多项式写成几个整式积的形式是解题的关键.
5、C
【解析】
首先找到当y>0时,图象所在位置,再根据图象可直接得到答案.
【详解】
当y>0时,图象在x轴上方,
∵与x交于(-1,0),
∴y>0时,自变量x的取值范围是x>-1,
故选:C.
考查了一次函数与一元一次不等式,关键是能从图象中找到对应的直线.
6、A
【解析】
设原计划每天修x米,则实际每天修(x+15)米,根据时间=工作总量÷工作效率结合提前1天完成任务,即可得出关于x的分式方程,此题得解.
【详解】
设原计划每天修x米,则实际每天修(x+15)米.
由题意,知原计划用的时间为天,实际用的时间为:天,
故所列方程为:=1.
故选:A.
本题考查了由实际问题抽象出分式方程,根据等量关系结合分式方程,找出未知数代表的意义是解题的关键.
7、C
【解析】
根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,即可得出答案.
【详解】
解:平行四边形的对角相等,对角线互相平分,两组对边平行且相等.
故选:C.
此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.
8、B
【解析】
根据题意,结合员工工资情况,从统计量的角度分析可得答案.
【详解】
根据题意,了解这家公司的员工的工资的中等水平,
结合员工情况表,即要全面的了解大多数员工的工资水平,
故最应该关注的数据的中位数,
故选:B.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
写出函数图象在x轴下方所对应的自变量的范围即可.
【详解】
解:观察图像可知:当x>2时,y<1.
所以关于x的不等式kx+3<1的解集是x>2.
故答案为:x>2.
本题考查了一次函数与一元一次不等式的关系.y=kx+b与kx+b>1、kx+b<1的关系是:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.整体是就是体现数形结合的思想.
10、3
【解析】
∵-3、3, -2、1、3、0、4、x的平均数是1,
∴-3+3-2+1+3+0+4+x=8
∴x=2,
∴一组数据-3、3, -2、1、3、0、4、2,
∴众数是3.
故答案是:3.
11、(2,3)
【解析】根据横坐标右移加,左移减;纵坐标上移加,下移减可得A′的坐标为(0+2,3).
解:点A(0,3)向右平移2个单位长度后所得的点A′的坐标为(0+2,3),
即(2,3),
故答案为:(2,3).
12、
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.0.00000012=.
13、.
【解析】
先根据等腰三角形的性质求出的度数,再根据三角形外角的性质及等腰三角形的性质求出,及的度数.
【详解】
在中,,,
,是的外角,
,
同理可得 .
故答案为:.
本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出、及的度数.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)结论仍然成立.理由见解析;(3)结论发生变化.EF=CF-BE.
【解析】
(1)根据△ABC是等边三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,这样可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以证明△AEF是等边三角形,也可以证明△BDE≌△CDF,可以得到DE=DF,由此进一步得到
DE=DF∠BDE=∠CDF=30°,这样可以得到BE=DE=DF=CF,而△DEF是等边三角形,所以题目的结论就可以证明出来了;(2)结论仍然成立.如图,在AB的延长线上取点F’,使BF’=CF,连接DF’,根据(1)的结论可以证明△DCF≌△DBF’,根据全等三角形的性质可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以证明△EDF’≌△EDF,从而证明题目的结论;(3)结论发生变化. EF=BE-CF.如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得△DCF≌△DBF′(SAS).根据全等三角形的性质可以得到DF=DF′,∠BDF′=∠CDF.又因为∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,由此可得△EDF′≌△EDF(SAS),从而证明题目的结论EF=EF′=BF′- BE=CF- BE。
【详解】
(1)证明:∵△ABC是等边三角形,
∴AB=AC,∠ABC=∠ACB=60°.
∵DB=DC,∠BDC=120°,
∴∠DBC=∠DCB=30°.
∴∠DBE=∠DBC+∠ABC=90°,
∠DCF=∠DCB+∠ACB=90°.
∵EF∥BC,∴∠AEF=∠ABC=60°,
∠AFE=∠ACB=60°.∴AE=AF.
∴BE=AB-AE=AC-AF=CF.
又∵DB=DC,∠DBE=∠DCF=90°,
∴△BDE≌△CDF.
∴DE=DF,∠BDE=∠CDF=(120°-60°)=30°.
∴BE=DE=DF=CF.
∵∠EDF=60°,∴△DEF是等边三角形,
即DE=DF=EF.
∴BE+CF=DE+DF=EF,
即EF=BE+CF.
(2)解:结论仍然成立.
理由如下:如图,在射线AB上取点F′,
使BF′=CF,连接DF′.
由(1)得∠DBE=∠DCF=90°,
则∠DBF′=∠DCF=90°.
又∵BD=CD,
∴△DCF≌△DBF′(SAS).
∴DF=DF′,∠BDF′=∠CDF.
又∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠CDF=60°.
∴∠EDB+∠BDF′=∠EDF′=60°.
∴∠EDF′=∠EDF.
又∵DE=DE,
∴△EDF′≌△EDF(SAS).
∴EF=EF′=BE+BF′=BE+CF.
(3)解:结论发生变化.EF=CF-BE.
理由:在射线AB上取点F′,
使BF′=CF,连接DF′.
由(1)得∠DBA=∠DCF=90°,
则∠DBF′=∠DCF=90°.
又∵BD=CD,
∴△DCF≌△DBF′(SAS).
∴DF=DF′,∠BDF′=∠CDF.
又∵∠BDC=120°,∠EDF=60°,
∴∠FDB+∠CDF=60°.
∴∠FDB+∠BDF′=∠FDF′=120°.
∴∠EDF′=∠EDF=60°.
又∵DE=DE,DF=DF′,
∴△EDF′≌△EDF(SAS).
∴EF=EF′=BF′- BE=CF- BE。
此题考查等边三角形的性质及全等三角形的判定及性质;利用等边三角形的性质去探究全等三角形,利用全等三角形的性质解决题目的图形变换规律是非常重要的,要注意掌握.
15、(1)证明见解析;(2)1.
【解析】
(1)由AD∥BC,BD平分∠ABC,可得AD=AB,结合AD∥BC,可得四边形ABCD是平行四边形,进而,可证明四边形ABCD是菱形,
(2)由四边形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=1,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.
【详解】
(1)证明:∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AD=AB,
∵AB=BC,
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形,
又∵AB=BC,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,
∴AC⊥BD,OB=OD,OA=OC=AC=2,
在Rt△OCD中,由勾股定理得:OD==1,
∴BD=2OD=8,
∵DE⊥BC,
∴∠DEB=90°,
∵OB=OD,
∴OE=BD=1.
本题主要考查菱形的判定定理及性质定理,题目中的“双平等腰”模型是证明四边形是菱形的关键,掌握直角三角形的性质和勾股定理,是求OE长的关键.
16、
【解析】
试题分析:先根据分式混合运算的法则把原式进行化简,然后代入计算即可.
试题解析:解:原式==
当x=时,原式==.
17、12.
【解析】
根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC的长即可.
【详解】
∵ D、E是AB、BC的中点,DE=3
∴AC=2DE=6
∵∠A=90°,∠B=30°
∴BC=2AC=12.
此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.
18、(1)√;√;√;√;(2);
(3)
【解析】
(1)根据二次根式的性质直接化简得出即可;
(2)根据已知条件即可得出数字变化规律,猜想出(3)中数据即可;
(3)根据(1)(2)数据变化规律得出公式即可.
【详解】
解:(1),正确;
,正确;
,正确;
,正确.
故答案为:√;√;√;√;
(2);
(3).
此题主要考查了数字变化规律,根据根号内外的变化得出规律得出通项公式是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.
【详解】
∵反比例函数y=−2x中,k=−2<0,
∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大。
∵−2<−1<0,12>0,
∴点A(−2,y2),B(−1,y1)在第二象限,点C(12,y3)在第四象限,
∴y3
20、2
【解析】
先解出关于x的不等式,由数轴上表示的解集求出的范围即可.
【详解】
解:,
不等式组整理得:,
由数轴得:,可得,
解得:,
故答案为2
此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.
21、1693
【解析】
如果一个数是智慧数,就能表示为两个正整数的平方差,设这两个数分别m、n,设m>n,即智慧数=m1-n1=(m+n)(m-n),因为m,n是正整数,因而m+n和m-n就是两个自然数.要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个正整数的和与差.
【详解】
解:1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数1k+1,有1k+1=(k+1)1-k1(k=1,1,…).所以大于1的奇正整数都是“智慧数”.
对于被4整除的偶数4k,有4k=(k+1)1-(k-1)1(k=1,3,…).
即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.
对于被4除余1的数4k+1(k=0,1,1,3,…),设4k+1=x1-y1=(x+y)(x-y),其中x,y为正整数,
当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+1不被4整除;
当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+1为偶数,总得矛盾.
所以不存在自然数x,y使得x1-y1=4k+1.即形如4k+1的数均不为“智慧数”.
因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.
因为1017=(1+3×671),4×(671+1)=1691,
所以1693是第1018个“智慧数”,
故答案为:1693.
本题考查平方差公式,有一定的难度,主要是对题中新定义的理解与把握.
22、±1
【解析】
根据二次根式有意义的条件可得,再解可得x的值,进而可得y的值,然后可得(xy-64)2的平方根.
【详解】
解:由题意得:,
解得:x=7,
则y=9,
(xy-64)2=1,
1的平方根为±1,
故答案为:±1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
23、1
【解析】
先利用平方差公式:化简所求式子,再将已知式子的值代入求解即可.
【详解】
将代入得:原式
故答案为:1.
本题考查了利用平方差公式进行化简求值,熟记公式是解题关键.另一个重要公式是完全平方公式:,这是常考知识点,需重点掌握.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
试题解析:
证明:(1)选取①②,
∵在△BEO和△DFO中,
∴△BEO≌△DFO(ASA);
(2)由(1)得:△BEO≌△DFO,
∴EO=FO,BO=DO,
∵AE=CF,
∴AO=CO,
∴四边形ABCD是平行四边形.
点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
25、(1)y=150-10x(0≤x≤5且x为整数);(2)售价应定为42元.
【解析】
(1)根据每周销量=150-10×每件涨价钱数,即可得出y与x的关系式;
(2)根据每周的总利润=每件商品的利润×每周的销量,可得关于x的一元二次方程,解之即得x的值,取其较小者代入40+x即可得出结论.
【详解】
解:(1)由题意,得y=150-10x(0≤x≤5且x为整数);
(2)设每星期的利润为w元, 则w=(40+x-30)y =(x+10)(150-10x)=-10x2+50x+1500,
要使每星期的利润为1560元,
则w=1560,即-10x2+50x+1500=1560.
解这个方程得:x1=2,x2=3.
∴当x=2或3时,可使每星期的利润为1560元,
从有利于消费者的角度出发,应取x=2,此时40+x=42,即售价应定为42元.
本题是一元二次方程的应用问题中较为典型的类型,解题的思路一般是先表示出销量,再表示出总利润,最后得出方程.需要注意的是,在列方程时,要认真审题,加强分析,注意题意中的“一涨一少”,明确涨的是什么,少的是什么.
26、(1)y甲=0.8x(x≥0),;(2)当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.
【解析】
(1)利用待定系数法即可求出y甲,y乙关于x的函数关系式;
(2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论即可.
【详解】
(1)设y甲=kx,把(2000,1600)代入,得2000x=1600,解得k=0.8,所以y甲=0.8x(x≥0);
当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000x=2000,解得k=1,所以y乙=x;
当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得: ,
解得:.
所以;
(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;
当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;
若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;
若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;
故当购买金额按原价小于6000元时,到甲商店购买更省钱;
当购买金额按原价大于6000元时,到乙商店购买更省钱;
当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.
考点:一次函数的应用;分类讨论;方案型.
题号
一
二
三
四
五
总分
得分
2025届山东省泰安市肥城市九上数学开学达标测试试题【含答案】: 这是一份2025届山东省泰安市肥城市九上数学开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省新泰市实验中学九上数学开学综合测试模拟试题【含答案】: 这是一份2024年山东省新泰市实验中学九上数学开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。
2024年山东省泰安市泰山区数学九上开学综合测试试题【含答案】: 这是一份2024年山东省泰安市泰山区数学九上开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。