|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省青岛市李沧区2025届九年级数学第一学期开学复习检测模拟试题【含答案】
    立即下载
    加入资料篮
    山东省青岛市李沧区2025届九年级数学第一学期开学复习检测模拟试题【含答案】01
    山东省青岛市李沧区2025届九年级数学第一学期开学复习检测模拟试题【含答案】02
    山东省青岛市李沧区2025届九年级数学第一学期开学复习检测模拟试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省青岛市李沧区2025届九年级数学第一学期开学复习检测模拟试题【含答案】

    展开
    这是一份山东省青岛市李沧区2025届九年级数学第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)满足下列条件的,不是直角三角形的是( )
    A.B.
    C.D.
    2、(4分)已知:a=,b=,则a与b的关系是( )
    A.相等B.互为相反数C.互为倒数D.平方相等
    3、(4分)如图,在菱形中, , 是上一点,, 是边上一动点,将四边形沿宜线折叠,的对应点.当的长度最小时,则的长为( )

    A.B.C.D.
    4、(4分)对于函数y=-2x+5,下列说法正确的是( )
    A.图象一定经过(2,-1)B.图象经过一、二、四象限
    C.图象与直线y=2x+3平行D.y随x的增大而增大
    5、(4分)若代数式在实数范围内有意义,则x的取值范围是( )
    A.x<3B.x≤3C.x>3D.x≥3
    6、(4分)在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是( )
    A.B.C.D.
    7、(4分)(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是( )
    A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH
    8、(4分)下列从左边到右边的变形,是因式分解的是( )
    A.y2﹣2y+4=(y﹣2)2
    B.10x2﹣5x=5x(2x﹣1)
    C.a(x+y)=ax+ay
    D.t2﹣16+3t=(t+4)(t﹣4)+3t
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,AB∥CD,则∠1+∠3—∠2的度数等于 __________.
    10、(4分)若分式的值为,则的值为_______.
    11、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
    12、(4分)分解因式:______.
    13、(4分)中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.
    (1)求A、B、C三点坐标;(2)求△ABC的面积.
    15、(8分)甲、乙两家文化用品商场平时以同样价格出售相同的商品.六一期间两家商场都让利酬宾,其中甲商场所有商品一律按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.
    (1)分别写出两家商场购物金额(元)与商品原价(元)的函数解析式;
    (2)在如图所示的直角坐标系中画出(1)中函数的图象;
    (3)六一期间如何选择这两家商场购物更省钱?
    16、(8分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.
    (1)在图①、图②中,以格点为顶点,线段AB为一边,分别画一个平行四边形和菱形,并直接写出它们的面积.(要求两个四边形不全等)
    (2)在图③中,以点A为顶点,另外三个顶点也在格点上,画一个面积最大的正方形,并直接写出它的面积。
    17、(10分)计算:
    (1) ;
    (2)(﹣1)(+1)+(﹣2)2
    18、(10分)定义:如果一条直线与一条曲线有且只有一个交点,且曲线位于直线的同旁,称之为直线与曲线相切,这条直线叫做曲线的切线,直线与曲线的唯一交点叫做切点.
    (1)如图,在平面直角坐标系中,点为坐标原点,以点为圆心,5为半径作圆,交轴的负半轴于点,求过点的圆 的切线的解析式;
    (2)若抛物线()与直线()相切于点,求直线的解析式;
    (3)若函数的图象与直线相切,且当时,的最小值为,求的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如果一组数据a ,a ,…a的平均数是2,那么新数据3a ,3a ,…3a的平均数是______.
    20、(4分)平行四边形的一个内角平分线将对边分成3和5两个部分,则该平行四边形的周长是_____.
    21、(4分)古算题:“笨人执竿要进屋,无奈门框拦住竿,横多四尺竖多二,没法急得放声哭,有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足,借问竿长多少数,谁人算出我佩服,”若设竿长为 x 尺,则可列方程为_____(方程无需化简).
    22、(4分)已知一元二次方程:2x2+5x+1=0的两个根分别是x1、x2 , 则=________.
    23、(4分)若一次函数y=kx+b图象如图,当y>0时,x的取值范围是___________ .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知关于x的一元二次方程有两个不相等的实数根.
    求k的取值范围;
    若k为负整数,求此时方程的根.
    25、(10分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
    (1)求证:BM=MN;
    (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
    26、(12分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:
    (1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
    (2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.
    【详解】
    A. ,则a2+c2=b2 ,△ABC是直角三角形,故A正确,不符合题意;
    B. 52+122=132,△ABC是直角三角形,故B正确,不符合题意;
    C.∠A:∠B:∠C=3:4:5,
    设∠A、∠B、∠C分别为3x、4x、5x,
    则3x+4x+5x=180°,
    解得,x=15°,
    则∠A、∠B、∠C分别为45°,60°,75°,
    △ABC不是直角三角形;故C选项错误,符合题意;
    D. ∠A-∠B=∠C,则∠A=∠B+∠C,
    ∠A=90°,
    △ABC是直角三角形,故D正确,不符合题意;
    故选C.
    本题考查的是三角形内角和定理、勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    2、C
    【解析】
    因为,故选C.
    3、D
    【解析】
    由A′P=6可知点A′在以P为圆心以PA′为半径的弧上,故此当C,P,A′在一条直线上时,CA′有最小值,过点C作CH⊥AB,垂足为H,先求得BH、HC的长,则可得到PH的长,然后再求得PC的长,最后依据折叠的性质和平行线的性质可证明△CQP为等腰三角形,则可得到QC的长.
    【详解】
    由A′P=6可知点A′在以P为圆心以PA′为半径的弧上,故此当C,P,A′在一条直线上时,CA′有最小值,过点C作CH⊥AB,垂足为H.
    在Rt△BCH中,∠B=60°,BC=16,则
    BH=BC=8,CH= =8.
    ∴PH=1.
    在Rt△CPH中,依据勾股定理可知:PC==2.
    由翻折的性质可知:∠APQ=∠A′PQ.
    ∵DC∥AB,
    ∴∠CQP=∠APQ.
    ∴∠CQP=∠CPQ.
    ∴QC=CP=2.
    故选:D.
    本题主要考查的是两点之间线段最短、菱形的性质、勾股定理的应用,翻折的性质、等腰三角形的判定,判断出CA′取得最小值的条件是解题的关键.
    4、B
    【解析】
    利用一次函数的性质逐个分析判断即可得到结论.
    【详解】
    A、把x=2代入代入y=-2x+5,得y=1≠-1,所以A不正确;
    B、∵k=-2<0,b=5>0,∴图象经过一、二、四象限,所以B正确;
    C、∵y=-2x+5与y=2x+3的k的值不相等,
    ∴图象与直线y=2x+3不平行,所以C不正确;
    D、∵k=-2<0,∴y随x的增大而减小,所以D不正确;
    故选:B.
    本题考查了两直线相交或平行,一次函数的性质,一次函数图象上点的坐标特征,综合性较强,难度适中.
    5、B
    【解析】
    根据二次根式的被开方数是非负数列出不等式,解不等式即可.
    【详解】
    由题意得,3﹣x≥0,解得,x≤3,故选:B.
    本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.
    6、D
    【解析】
    解:三角形纸片ABC中,AB=8,BC=4,AC=1.
    A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;
    B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;
    C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;
    D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;
    故选D.
    点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.
    7、D
    【解析】
    先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.
    【详解】
    解:设正方形的边长为2,则CD=2,CF=1
    在直角三角形DCF中,
    ∴矩形DCGH为黄金矩形
    故选:D.
    本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.
    8、B
    【解析】
    根据因式分解的意义,可得答案.
    【详解】
    A.分解不正确,故A不符合题意;
    B.把一个多项式转化成几个整式积的形式,故B符合题意;
    C.是整式的乘法,故C不符合题意;
    D.没把一个多项式转化成几个整式积的形式,故D不符合题意.
    故选B.
    本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、180°
    【解析】
    解:∵AB∥CD
    ∴∠1=∠EFD
    ∵∠2+∠EFC=∠3
    ∠EFD=180°-∠EFC
    ∴∠1+∠3—∠2=180°
    故答案为:180°
    10、
    【解析】
    分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    由题意可得3-2x=1,
    解得x=,
    又∵2+3x≠1,
    解得x=.
    此题考查分式的值为零的条件,解题关键在于掌握运算法则
    11、2
    【解析】
    解:这组数据的平均数为2,
    有 (2+2+0-2+x+2)=2,
    可求得x=2.
    将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
    其平均数即中位数是(2+2)÷2=2.
    故答案是:2.
    12、
    【解析】
    根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.
    【详解】
    ,
    =,
    =,
    故答案为:.
    本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
    13、45°
    【解析】
    根据正多边形的外角度数等于外角和除以边数可得.
    【详解】
    ∵硬币边缘镌刻的正多边形是正八边形,
    ∴它的外角的度数等于360÷8=45°.
    故答案为45°.
    本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.
    三、解答题(本大题共5个小题,共48分)
    14、(1)A(,),B(),C(5,0)(2)
    【解析】
    解:(1)由题意得,令直线l1、直线l2中的y为0,得:x1=-,x2=5,
    由函数图象可知,点B的坐标为(-,0),点C的坐标为(5,0),
    ∵l1、l2相交于点A,
    ∴解y=2x+3及y=-x+5得:x=,y=
    ∴点A的坐标为(,);
    (2)由(1)题知:|BC|=,
    又由函数图象可知S△ABC=×|BC|×|yA|=××=
    15、(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7x+60(x>200);(2)详见解析;(3)详见解析.
    【解析】
    (1)根据题中描述的数量关系分别写出甲商场和乙商场中,y与x的函数关系即可(其中乙商场需分0≤x≤200和x>200两段分别讨论);(2)根据(1)中所得函数关系式按要求画出函数图象即可;(3)根据(1)中所得函数关系式分0.8x<0.7x+60、0.8x=0.7x+60、0.8x>0.7x+60三种情况进行解答即可得到相应的结论.
    【详解】
    解:(1)甲商场:y=0.8x,
    乙商场:y=x(0≤x≤200),
    y=0.7(x﹣200)+200=0.7x+60,
    即y=0.7x+60(x>200);
    (2)如图所示;
    (3)①由0.8x<0.7x+60解得:x<600;
    ②由0.8x=0.7x+60解得:x=600;
    ③由0.8x>0.7x+60解得x>600,
    ∴当x=600时,甲、乙商场购物花钱相等;当x<600时,在甲商场购物更省钱;当x>600时,在乙商场购物更省钱.
    本题考查了一次函数的应用,解决第(1)小题时,需注意乙商场中:y与x的函数关系式需分0≤x≤200和x>200两段分别讨论;解第(2)小题时,需分三种情况分别讨论,再作出相应的结论.
    16、(1)菱形的面积=4;平行四边形的面积=4;作图见解析(2)正方形的面积=10,作图见解析.
    【解析】
    (1)根据菱形和平行四边形的画法解答即可;
    (2)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.
    【详解】
    (1)如图①②所示:
    菱形的面积=4;平行四边形的面积=4;
    (2)如图③所示:
    正方形的面积=10
    此题考查基本作图,解题关键在于掌握作图法则
    17、 (1);(2)8-
    【解析】
    (1)根据二次根式的混合运算法则进行计算即可.
    (2)利用完全平方公式和平方差公式进行计算即可.
    【详解】
    (1)原式=3++2﹣
    =3+2+
    =;
    (2)原式=2﹣1+3﹣4+4
    =8﹣4.
    此题考查二次根式的混合运算,解题关键在于利用平方差公式和完全平方公式进行计算.
    18、(1);(2);(3)1或
    【解析】
    (1)连接,由、可求,即.因为过点的切线,故有,再加公共角,可证,由对应边成比例可求的长,进而得点坐标,即可求直线解析式.
    (2)分别把点代入抛物线和直线解析式,求得抛物线解析式为,直线解析式可消去得.由于直线与抛物线相切(只有一个交点),故联立解析式得到关于的方程有两个相等的实数根,即△,即求得的值.
    (3)因为二次函数图象与直线相切,所以把二次函数和直线解析式联立,得到关于的方程有两个相等是实数根,即△,整理得式子,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线.分类讨论对称轴在左侧、中间、右侧三种情况,画出图形得:①当对称轴在左侧即时,由图象可知时随的增大而增大,所以时取得最小值,把、代入得到关于的方程,方程无解;②当对称轴在范围内时,时即取得最小值,得方程,解得:;③当对称轴在2的右侧即时,由图象可知时随的增大而减小,所以时取得最小值,把、代入即求得的值.
    【详解】
    解:(1)如图1,连接,记过点的切线交轴于点



    设直线解析式为:
    ,解得:
    过点的的切线的解析式为;
    (2)抛物线经过点
    ,解得:
    抛物线解析式:
    直线经过点
    ,可得:
    直线解析式为:
    直线与抛物线相切
    关于的方程有两个相等的实数根
    方程整理得:

    解得:
    直线解析式为;
    (3)函数的图象与直线相切
    关于的方程有两个相等的实数根
    方程整理得:

    整理得:,可看作关于的二次函数,
    对应抛物线开口向上,对称轴为直线
    当时,的最小值为
    ①如图2,当时,在时随的增大而增大
    时,取得最小值
    ,方程无解;
    ②如图3,当时,时,取得最小值
    ,解得:;
    ③如图4,当时,在时随的增大而减小
    时,取得最小值
    ,解得:,(舍去)
    综上所述,的值为1或.
    本题考查了圆的切线的性质,相似三角形的判定和性质,一元二次方程的解法及根与系数的关系,二次函数的图象与性质.第(3)题的解题关键是根据相切列得方程并得到含、的等式,转化为关于的二次函数,再根据画图讨论抛物线对称轴情况进行解题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、6
    【解析】
    根据所给的一组数据的平均数写出这组数据的平均数的表示式,把要求的结果也有平均数的公式表示出来,根据前面条件得到结果.
    【详解】
    解:一组数据,,,的平均数为2,

    ,,,的平均数是
    故答案为6
    本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
    20、22或1.
    【解析】
    根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠DAE=∠AEB,
    ∵AE为角平分线,
    ∴∠DAE=∠BAE,
    ∴∠AEB=∠BAE,
    ∴AB=BE,
    ∴①当BE=3时,CE=5,AB=3,
    则周长为22;
    ②当BE=5时,CE=3,AB=5,
    则周长为1,
    故答案为:22或1.
    本题考查了平行四边形的性质,结合了等腰三角形的判定.注意有两种情况,要进行分类讨论.
    21、(x−1)1+(x−4)1=x1
    【解析】
    设竿长为x尺,根据题意可得,屋门的宽为x−4,高为x−1,对角线长为x,然后根据勾股定理列出方程.
    【详解】
    解:设竿长为x尺,
    由题意得:(x−1)1+(x−4)1=x1.
    故答案为:(x−1)1+(x−4)1=x1.
    本题考查了利用勾股定理解决实际问题,解答本题的关键是根据题意表示出屋门的宽,高.
    22、
    【解析】
    依据一元二次方程根与系数的关系:x1+x2=-,x1·x2=,即可求出.
    【详解】
    因为2x2+5x+1=0,所有a=2、b=5、c=1,所以x1+x2=-,x1·x2=,有因为=x1x2(x1+x2),所以=-×=
    本题考查一元二次方程根与系数之间的关系,熟练掌握相关知识是解的关键.
    23、x<-1
    【解析】
    由图象可知一次函数y=kx+b的图象经过点(-1,0)、(0,-2).
    ∴ ,
    解得 ,
    ∴该一次函数的解析式为y=−2x-2,
    ∵−2<0,
    ∴当y>0时,x的取值范围是:x<-1.
    故答案为x<-1.
    二、解答题(本大题共3个小题,共30分)
    24、();()时,,.
    【解析】
    试题分析:
    (1)由题意可知:在该方程中,“根的判别式△>0”,由此列出关于k的不等式求解即可;
    (2)在(1)中所求的k的取值范围内,求得符合条件的k的值,代入原方程求解即可.
    试题解析:
    (1)由题意得Δ>0,
    即9-4(1-k)>0,
    解得k>.
    (2)若k为负整数,则k=-1,
    原方程为x2-3x+2=0,
    解得x1=1,x2=2.
    25、(1)证明见解析;(2)
    【解析】
    (1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论;
    (2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到,再由MN=BM=1,得到BN的长.
    【详解】
    (1)在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=AD,在Rt△ABC中,∵M是AC的中点,∴BM=AC,又∵AC=AD,∴MN=BM;
    (2)∵∠BAD=60°且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴,而由(1)知,MN=BM=AC=×2=1,∴BN=.
    考点:三角形的中位线定理,勾股定理.
    26、 (1)甲;(2)乙.
    【解析】
    (1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;
    (2)先用加权平均数公式,计算甲、乙的平均数,然后根据计算结果,结果大的胜出.
    【详解】
    (1)=(73+80+82+83)÷4=79.5,
    ∵80.25>79.5,
    ∴应选派甲;
    (2)=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,
    =(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,
    ∵79.5<80.4,
    ∴应选派乙.
    题号





    总分
    得分
    批阅人
    选手
    表达能力
    阅读理解
    综合素质
    汉字听写

    85
    78
    85
    73

    73
    80
    82
    83
    相关试卷

    山东省青岛市胶州实验2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份山东省青岛市胶州实验2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省青岛市集团学校2025届九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份山东省青岛市集团学校2025届九年级数学第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省青岛市西海岸、平度、胶州九年级数学第一学期开学复习检测试题【含答案】: 这是一份2025届山东省青岛市西海岸、平度、胶州九年级数学第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map