山东省聊城市临清市2025届数学九年级第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知 y1 x 5 , y2 2x 1 .当 y1 y2 时,x 的取值范围是( )
A.x 5B.x C.x 6D.x 6
2、(4分)下列曲线中不能表示y与x的函数的是( )
A.B.C.D.
3、(4分)下列四组线段中,不能作为直角三角形三条边的是( )
A.3cm,4cm,5cmB.2cm,2cm,2cmC.2cm,5cm,6cmD.5cm,12cm,13cm
4、(4分)将一次函数y=﹣3x﹣2的图象向上平移4个单位长度后,图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)等腰中,,用尺规作图作出线段BD,则下列结论错误的是( )
A.B.C.D.的周长
6、(4分)如果把分式中的和都扩大3倍,那么分式的值()
A.扩大3倍B.缩小3倍
C.缩小6倍D.不变
7、(4分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )
A.1:3B.1:4C.2:3D.1:2
8、(4分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以正方形的对角线OA1为边作正方形OA1A2B1,再以正方形的对角线OA2为边作正方形OA1A2B1,…,依此规律,则点A2017的坐标是( )
A.(21008,0)B.(21008,﹣21008)C.(0,21010)D.(22019,﹣22019)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,直线与直线相交于点,则关于的二元一次方程组的解是__________.
10、(4分)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.
11、(4分)当x=______时,分式的值是1.
12、(4分)如图,在△ABC中,AB=5,BC=7,EF是△ABC的中位线,则EF的长度范围是________.
13、(4分)如图,一张矩形纸片的长AD=12,宽AB=2,点E在边AD上,点F在边BC上,将四边形ABFE沿直线EF翻折后,点B落在边AD的三等分点G处,则EG的长为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.
(1)求证:DE=DC.
(2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC的延长线于点G.试探究线段DF、DG的数量关系.
15、(8分)如图所示,四边形ABCD是平行四边形,已知DE平分∠ADC,交AB于点E,过点E作EF∥AD,交DC于F,求证:四边形AEFD是菱形.
16、(8分)因式分解:
(1)a(x﹣y)﹣b(y﹣x)2
(2)2x3﹣8x2+8x.
17、(10分)先化简÷,然后从1、2、3中选取一个你认为合适的数作为a的值代入求值.
18、(10分)解方程:3x-1=x2
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知1<x<5,化简+|x-5|=____.
20、(4分)如图,函数和的图象交于点,根据图象可知,关于的不等式的解集为________.
21、(4分)如图,在平面直角坐标系中,已知的直角顶点在轴上,,反比例函数在第一象限的图像经过边上点和的中点,连接.若,则实数的值为__________.
22、(4分)当x=_____时,分式的值为零.
23、(4分)小明对自己上学路线的长度进行了20次测量,得到20个数据x1,x2,…,x20,已知x1+x2+…+x20=2019,当代数式(x﹣x1)2+(x﹣x2)2+…+(x﹣x20)2取得最小值时,x的值为___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)我们借助对同一个长方形面积的不同表示,可以解释一些多项式的因式分解.例如选取图①中的卡片张、卡片张、卡片张,就能拼成图②所示的正方形,从而可以解释.请用卡片张、卡片张、卡片张拼成一个长方形,画图并完成多项式的因式分解.
25、(10分)如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=1.求AC的长.
26、(12分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE.、DE分别交AB于点O、F,且OP=OF,则BP的长为______.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由题意得到x-5>2x+1,解不等式即可.
【详解】
∵y1>y2,
∴x−5>2x+1,
解得x<−6.
故选C.
此题考查一次函数与一元一次不等式,解题关键在于掌握运算法则.
2、C
【解析】
函数是在一个变化过程中有两个变量x,y,一个x只能对应唯一一个y.
【详解】
当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.
选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系.
函数图像的判断题,只需过每个自变量在x轴对应的点,作垂直x轴的直线观察与图像的交点,有且只有一个交点则为函数图象。
3、C
【解析】
分析:要判断是否为直角三角形,需验证两小边的平方和是否等于最长边的平方.
详解:A、3²+4²=5²,能构成直角三角形,不符合题意;
B、2²+2²=,能构成直角三角形,不符合题意;
C、2²+5²≠6²,不能构成直角三角形,符合题意;
D、5²+12²=13²,能构成直角三角形,不符合题意.
故选C.
点睛:本题考查了勾股定理的逆定理:已知△ABC的三边满足a²+b²=c²,则△ABC是直角三角形.
4、C
【解析】
画出平移前后的函数图像,即可直观的确定答案.
【详解】
解:如图:平移后函数图像不经过第三象限,即答案为C.
本题考查了函数图像的平移,作图法是一种比较好的解题方法.
5、C
【解析】
根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.
【详解】
解:∵等腰△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°,
由作图痕迹发现BD平分∠ABC,
∴∠A=∠ABD=∠DBC=36°,
∴AD=BD,故A、B正确;
∵AD≠CD,
∴S△ABD=S△BCD错误,故C错误;
△BCD的周长=BC+CD+BD=BC+AC=BC+AB,
故D正确.
故选C.
本同题考查等腰三角形的性质,能够发现BD是角平分线是解题的关键.
6、D
【解析】
将x,y用3x,3y代入化简,与原式比较即可.
【详解】
解:将x,y用3x,3y代入得=,
故值不变,答案选D.
本题考查分式的基本性质,熟悉掌握是解题关键.
7、D
【解析】
解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=DB,则DE:EB=1:1,∴DF:AB=1:1.∵DC=AB,∴DF:DC=1:1,∴DF:FC=1:2.故选D.
8、B
【解析】
根据正方形的性质可找出部分点An的坐标,根据坐标的变化即可找出A (2 ,2 )(n为自然数),再根据2017=252×8+1,即可找出点A2019的坐标.
【详解】
观察发现:
A(0,1)、A(1,1),A(2,0),A(2,−2),A (0,−4),A (−4,−4),A (−8,0),A (−8,8),A (0,16),A (16,16)…,
∴A (2 ,2 )(n为自然数).
∵2017=252×8+1,
∴A2017的坐标是(21008,﹣21008).
故选B.
此题考查规律型:点的坐标,解题关键在于找到规律
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
关于x、y的二元一次方程组的解即为直线l1:y=mx-2与直线l2:y=x+n的交点P(1,2)的坐标.
【详解】
解:∵直线l1:y=mx-2与直线l2:y=x+n相交于点P(1,2),
∴关于x、y的二元一次方程组的解是.
故答案为.
本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.
10、1
【解析】
根据边之间的关系,运用勾股定理,列方程解答即可.
【详解】
由题意可设两条直角边长分别为x,2x,
由勾股定理得x2+(2x)2=(1)2,
解得x1=1,x2=-1舍去),
所以较短的直角边长为1.
故答案为:1
本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.
11、1
【解析】
直接利用分式的值为零则分子为零进而得出答案.
【详解】
∵分式的值是1,
∴x=1.
故答案为:1.
此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.
12、1<EF<6
【解析】
∵在△ABC中,AB=5,BC=7,
∴7-5<AC<7+5,
即2<AC<12.
又∵EF是△ABC的中位线,
∴EF=AC
∴1<EF<6.
13、或
【解析】
如图,作GH⊥BC于H.则四边形ABHG是矩形.G是AD的三等分点,推出AG=4或8,证明EG=FG=FB,设EG=FG=FB=x,分两种情形构建方程即可解决问题.
【详解】
解:如图,作GH⊥BC于H.则四边形ABHG是矩形.
∵G是AD的三等分点,
∴AG=4或8,
由翻折可知:FG=FB,∠EFB=∠EFG,设FG=FB=x.
∵AD∥BC,
∴∠FEG=∠EFB=∠GFE,
∴EG=FG=x,
在Rt△FGH中,∵FG2=GH2+FH2,
∴x2=22+(4-x)2或x2=22+(8-x)2
解得:x=或,
故答案为或.
本题考查翻折变换,矩形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见试题解析;(2)DF=DG.
【解析】
(1)利用院内接四边形的性质得到∠DEC=∠B,然后利用等角对等边得到结论.
(2)利用旋转的性质及圆内接四边形的性质证得△EDF≌△CDG后即可得到结论.
【详解】
(1)∵四边形ABDE内接于⊙O,
∴∠B+∠AED=180°,
∵∠DEC+∠AED=180°,
∴∠DEC=∠B,
∵AB=AC,
∴∠C=∠B,
∴∠DEC=∠C,
∴DE=DC;
(2)∵四边形ABDE内接于⊙O,
∴∠A+∠BDE=180°,
∵∠EDC+∠BDE=180°,
∴∠A=∠EDC,
∵OA=OE,∴∠A=∠OEA,
∵∠OEA=∠CEF,∴∠A=∠CEF,∴∠EDC=∠CEF,
∵∠EDC+∠DEC+∠DCE=180°,∴∠CEF+∠DEC+∠DCE=180°,即∠DEF+∠DCE=180°,
又∵∠DCG+∠DCE=180°,∴∠DEF=∠DCG,
∵∠EDC旋转得到∠FDG,∴∠EDC=∠FDG,
∴∠EDC﹣∠FDC=∠FDG﹣∠FDC,即∠EDF=∠CDG,
∵DE=DC,∴△EDF≌△CDG(ASA),
∴DF=DG.
15、详见解析.
【解析】
首先判定四边形AEFD是平行四边形,然后证明DF=EF,进而证明出四边形AEFD是菱形.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∵EF∥AD,
∴四边形AEFD是平行四边形,
∵DE平分∠ADC,
∴∠1=∠2,
∵EF∥AD,
∴∠1=∠DEF,
∴∠2=∠DEF,
∴DF=EF,
∵四边形AEFD是平行四边形,
∴四边形AEFD是菱形.
本题主要考查菱形的判定定理,掌握邻边相等的平行四边形是菱形是解题的关键.
16、(1)(x﹣y)[a﹣b(x﹣y)];(1)1x(x﹣1)1.
【解析】
(1)提取公因式x-y,在医院公因式法进行计算即可
(1)先提取公因式1x,再对余下的多项式利用完全平方公式继续分解
【详解】
(1)原式=a(x-y)-b(y-x) =(x﹣y)[a﹣b(x﹣y)];
(1)原式=1x(x -4x+4)=1x(x﹣1)1.
此题考查提取公因式法与公式法的综合运用,解题关键在于提取公因式
17、, 1.
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=×=×=
要使原分式有意义,故a=3,∴当a=3 时,原式=1.
18、x1=,x2=.
【解析】
方程整理后,利用公式法求出解即可.
【详解】
解:方程整理得:x2-3x+1=0,
这里a=1,b=-3,c=1,
∵△=9-4=5,
∴x=,
解得:x1=,x2=.
此题考查了解一元二次方程-公式法,以及配方法,熟练掌握各种解法是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
【分析】由已知判断x-1>0,x-5<0,再求绝对值.
【详解】因为1<x<5,
+|x-5|=|x-1|+|x-5|=x-1+5-x=4
故答案为:4
【点睛】本题考核知识点:二次根式化简. 解题关键点:求绝对值.
20、x>−1
【解析】
利用函数图象,写出直线y=ax+b在直线y=ax+b上方所对应的自变量的范围即可.
【详解】
解:由图可知,不等式kx>ax+b的解集为:x>−1.
故答案为:x>−1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
21、
【解析】
先根据含30°的直角三角形得出点B和点D的坐标,再根据△OAC面积为4和点C在反比例函数图象上得出k.
【详解】
在Rt△OAB中,∠B=30°,
∴可设OA=a,则AB=OA=a,
∴点B的坐标为(a,a),
∴直线OB的解析是为y=x
∵D是AB的中点
∴点D的坐标为(a,a)
∴k=a2
又∵S△OAC=4,
∴OA•yc=4,即•a•yc=4,
∴yc=
∴C(,)
∴k=•=
∴
∴a2=16,
∴k=a2=8.
故答案为8.
本题主要考查反比例函数的图象和性质,熟练运用30°直角三角形的性质与反比例函数k的几何意义是解题的关键.
22、1
【解析】
要使分式的值为0,则必须分式的分子为0,分母不能为0,进而计算x的值.
【详解】
解:由题意得,x﹣1=0且x+1≠0,
解得x=1.
故答案为:1.
本题主要考查分式为0的情况,关键在于分式的分母不能为0.
23、100.1
【解析】
先设出y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,然后进行整理得出y=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),再求出二次函数的最小值即可.
【详解】
解:设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2
=x2-2xx1+x12+x2-2xx2+x22+x2-2xx3+x32+…+x2-2xx20+x202
=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),
=20x2-2×2019x+(x12+x22+x32+…+x202),
则当x=时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值,
即当x=100.1时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值.
故答案为100.1.
此题考查了二次函数的性质,关键是设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,整理出一个二次函数.
二、解答题(本大题共3个小题,共30分)
24、见详解,
【解析】
先画出图形,再根据图形列式分解即可.
【详解】
解:如图,
此题主要考查了因式分解,正确的画出图形是解决问题的关键.
25、AC=
【解析】
根据勾股定理求出BD,设AC=x,得到AD=x﹣6,根据勾股定理列方程,解方程得到答案.
【详解】
解:∵CD⊥AB,
∴∠ADC=∠BDC=90°,
在Rt△BCD中,BD==6,
设AC=AB=x,则AD=x﹣6,
在Rt△ACD中,AC2=AD2+CD2,即x2=(x﹣6)2+12,
解得,x=,即AC=.
本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运用.
26、
【解析】
根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP,根据全等三角形的性质可得出OE=OB、EF=BP,设BF=EP=CP=x,则AF=4-x,BP=3-x=EF,DF=DE-EF=4-(3-x)=x+1,依据Rt△ADF中,AF2+AD2=DF2,求出x的值,即可得出BP的长.
【详解】
解:根据折叠可知:△DCP≌△DEP,
∴DC=DE=4,CP=EP.
在△OEF和△OBP中,,
∴△OEF≌△OBP(AAS),
∴OE=OB,EF=BP,
∴BF=EP=CP,
设BF=EP=CP=x,则AF=4-x,BP=3-x=EF,DF=DE-EF=4-(3-x)=x+1,
∵∠A=90°,
∴Rt△ADF中,AF2+AD2=DF2,
即(4-x)2+32=(1+x)2,
解得:x=,
∴BP=3-x=3-=,
故答案为:.
本题考查了翻折变换的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用,熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键.
题号
一
二
三
四
五
总分
得分
山东省临清市2025届数学九年级第一学期开学达标测试试题【含答案】: 这是一份山东省临清市2025届数学九年级第一学期开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省聊城市阳谷县2024-2025学年数学九上开学达标检测试题【含答案】: 这是一份山东省聊城市阳谷县2024-2025学年数学九上开学达标检测试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
山东省聊城市东阿县2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份山东省聊城市东阿县2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。