|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省聊城市东阿县2024-2025学年数学九年级第一学期开学考试试题【含答案】
    立即下载
    加入资料篮
    山东省聊城市东阿县2024-2025学年数学九年级第一学期开学考试试题【含答案】01
    山东省聊城市东阿县2024-2025学年数学九年级第一学期开学考试试题【含答案】02
    山东省聊城市东阿县2024-2025学年数学九年级第一学期开学考试试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省聊城市东阿县2024-2025学年数学九年级第一学期开学考试试题【含答案】

    展开
    这是一份山东省聊城市东阿县2024-2025学年数学九年级第一学期开学考试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )
    A.6B.7C.2D.2
    2、(4分)如图,在平行四边形中,于点E,以点B为中心,取旋转角等于,将顺时针旋转,得到.连接,若,,则的度数为( )
    A.B.C.D.
    3、(4分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( ).
    A.当AB=BC时,它是菱形
    B.当AC=BD时,它是正方形
    C.当∠ABC=90º时,它是矩形
    D.当AC⊥BD时,它是菱形
    4、(4分)点(﹣2,﹣1)在平面直角坐标系中所在的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    5、(4分)若一个正n边形的每个内角为144°,则n等于( )
    A.10B.8C.7D.5
    6、(4分)菱形和矩形一定都具有的性质是( )
    A.对角线相等B.对角线互相垂直
    C.对角线互相平分D.对角线互相平分且相等
    7、(4分)如图所示,在中,分别是的中点,分别交于点.下列命题中不正确的是( )
    A.B.
    C.D.
    8、(4分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的数为( )
    A.2B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系中,点P(–2,–3)在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    10、(4分)在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx<﹣x+3的解集是_____.
    11、(4分)如图,在矩形中,,对角线,相交于点,垂直平分于点,则的长为__________.
    12、(4分)如图,小军在地面上合适的位置平放了一块平面镜(平面镜的高度忽略不计),刚好在平面镜中的点处看到旗杆顶部,此时小军的站立点与点的水平距离为,旗杆底部与点的水平距离为.若小军的眼睛距离地面的高度为(即),则旗杆的高度为_____.
    13、(4分)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.

    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.
    (1)求∠EDF= (填度数);
    (2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;
    (3)①若AB=6,G是AB的中点,求△BFG的面积;
    ②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.
    15、(8分)如图,在矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,将沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.
    (1)求直线OB的解析式及线段OE的长.
    (2)求直线BD的解析式及点E的坐标.
    16、(8分)学校规定学生的学期总评成绩满分为100分,学生的学期总评成绩根据平时成绩、期中考试成绩和期末考试成绩按照2∶3∶5的比确定,小欣的数学三项成绩依次是85、90、94,求小欣这学期的数学总评成绩.
    17、(10分)如图1,对角线互相垂直的四边形叫做垂美四边形.
    (1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;
    (2)性质探究:如图1,四边形的对角线、交于点,.试证明:;
    (3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结、、.已知,,求的长.
    18、(10分)(1)读读做做:教材中有这样的问题,观察下面的式子,探索它们的规律,=1-,=,=……用正整数n表示这个规律是______;
    (2)问题解决:一容器装有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的,……,第n+1次倒出的水量是L水的,……,按照这种倒水方式,这1L水能否倒完?
    (3)拓展探究:①解方程:+++=;
    ②化简:++…+.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)小玲要求△ABC最长边上的高,测得AB=8cm,AC=6cm,BC=10cm,则最长边上的高为_____cm.
    20、(4分)如图所示,一次函数的图象与x轴的交点为,则下列说法:
    ①y的值随x的值的增大而增大;
    ②b>0;
    ③关于x的方程的解为.
    其中说法正确的有______只写序号
    21、(4分)如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC长__________cm.
    22、(4分)等边三角形的边长为6,则它的高是________
    23、(4分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知点P(1,m)、Q(n,1)在反比例函数y=的图象上,直线y=kx+b经过点P、Q,且与x轴、y轴的交点分别为A、B两点.
    (1)求 k、b的值;
    (2)O为坐标原点,C在直线y=kx+b上且AB=AC,点D在坐标平面上,顺次联结点O、B、C、D的四边形OBCD满足:BC∥OD,BO=CD,求满足条件的D点坐标.
    25、(10分)把顺序连结四边形各边中点所得的四边形叫中点四边形。
    (1)任意四边形的中点四边形是什么形状?为什么?
    (2)符合什么条件的四边形,它的中点四边形是菱形?
    (3)符合什么条件的四边形,它的中点四边形是矩形?
    26、(12分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据题意画出图形,利用勾股定理解答即可.
    【详解】
    如图,
    设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:

    两式相加得:a2+b2=31,
    根据勾股定理得到斜边==1.
    故选A.
    本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.
    2、D
    【解析】
    根据平行四边形的性质得∠ABC=∠ADC=60°,AD∥BC,则根据平行线的性质可计算出∠DA′B=130°,接着利用互余计算出∠BAE=30°,然后根据旋转的性质得∠BA′E′=∠BAE=30°,于是可得∠DA′E′=160°.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴∠ABC=∠ADC=60°,AD∥BC,
    ∴∠ADA′+∠DA′B=180°,
    ∴∠DA′B=180°−50°=130°,
    ∵AE⊥BE,
    ∴∠BAE=30°,
    ∵△BAE顺时针旋转,得到△BA′E′,
    ∴∠BA′E′=∠BAE=30°,
    ∴∠DA′E′=130°+30°=160°.
    故答案为:D.
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的性质.
    3、B
    【解析】
    分析:A、根据菱形的判定方法判断,B、根据正方形的判定方法判断,C、根据矩形的判定方法判断,D、根据菱形的判定方法判断.
    详解:A、菱形的判定定理,“一组邻边相等的平行四边形是菱形”,故A项正确;
    B、由正方形的判定定理,“对角线互相垂直且相等的平行四边形是正方形”可知,对角线仅相等的平行四边形是矩形,故B项错误;
    C、矩形的判定定理,“一个角是直角的平行四边形是矩形”,故C项正确;
    D、菱形的判定定理,“对角线互相垂直的平行四边形是菱形”,故D项正确。
    故选B.
    点睛:本题考查了矩形、菱形、正方形的判定方法,熟练掌握矩形、菱形、正方形的判定方法是解答本题的关键.
    4、C
    【解析】
    根据横纵坐标的符号可得相关象限.
    【详解】
    ∵点的横纵坐标均为负数,
    ∴点(-1,-2)所在的象限是第三象限,
    故选C.
    本题考查了点的坐标,用到的知识点为:横纵坐标均为负数的点在第三象限.
    5、A
    【解析】
    根据多边形的内角和公式列出关于n的方程,解方程即可求得答案.
    【详解】
    ∵一个正n边形的每个内角为144°,
    ∴144n=180×(n-2),解得:n=10,
    故选A.
    本题考查了多边形的内角和公式,熟练掌握多边形的内角和公式是解题的关键.
    6、C
    【解析】
    菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.
    【详解】
    菱形和矩形一定都具有的性质是对角线互相平分.
    故选C.
    本题考查了菱形及矩形的性质,熟知菱形和矩形的对角线的性质是解决本题的关键.
    7、A
    【解析】
    证出四边形AMCN是平行四边形,由平行四边形的性质得出选项B正确,由相似三角形的性质得出选项C正确,由平行四边形的面积公式得出选项D正确,即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,∠BAD=∠BCD,
    ∵M、N分别是边AB、CD的中点,
    ∴CN=CD,AM=AB,
    ∴CN=AM,
    ∴四边形AMCN是平行四边形,
    ∴AN∥CM,∠MAN=∠NCM,
    ∴∠DAN=∠BCM,选项B正确;
    ∴△BMQ∽△BAP,△DPN∽△DQC,
    ∴BQ:BP=BM:AB=1:2,DP:DQ=DN:CD=1:2,
    ∴DP=PQ,BQ=PQ,
    ∴DP=PQ=QB,
    ∴BP=DQ,选项C正确;
    ∵AB=2AM,
    ∴S▱AMCN:S▱ABCD=1:2,选项D正确;
    故选A.
    此题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识.此题难度适中,注意掌握数形结合思想的应用.
    8、C
    【解析】
    在Rt△​ABC中利用勾股定理求出AC,继而得出AM的长,结合数轴的知识可得出点M的坐标.
    【详解】
    解:由题意得,AC===,
    ∴AM=,
    ∴点M表示的数为,
    故选:C.
    此题考查了勾股定理与无理数,属于基础题,利用勾股定理求出AC的长度是解答本题的关键,难度一般.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、C
    【解析】
    应先判断出点P的横纵坐标的符号,进而判断其所在的象限.
    【详解】
    解:∵点P的横坐标-2<0,纵坐标为-3<0,
    ∴点P(-2,-3)在第三象限.
    故选:C.
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    10、x<1
    【解析】
    观察图象即可得不等式kx<-x+3的解集是x<1.
    点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.
    11、
    【解析】
    结合题意,由矩形的性质和线段垂直平分线的性质可得AB=AO=OB=OD=4,根据勾股定理可求AD的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AO=BO=CO=DO,
    ∵AE垂直平分OB于点E,
    ∴AO=AB=4,
    ∴AO=OB=AB=4,
    ∴BD=8,
    在Rt△ABD中,AD==.
    故答案为:.
    本题考查矩形的性质和线段垂直平分线的性质,解题的关键是掌握矩形的性质和线段垂直平分线的性质.
    12、1
    【解析】
    分析:根据题意容易得到△CDE∽△CBA,再根据相似三角形的性质解答即可.
    详解:由题意可得:AB=1.5m,BC=2m,DC=12m,
    △ABC∽△EDC,
    则,
    即,
    解得:DE=1,
    故答案为1.
    点睛:本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程.
    13、1
    【解析】
    由0-4分钟的函数图象可知进水管的速度,根据4-12分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.
    解:进水管的速度为:20÷4=5(升/分),
    出水管的速度为:5-(30-20)÷(12-4)=3.75(升/分),
    ∴关停进水管后,出水经过的时间为:30÷3.75=1分钟.
    故答案为1.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)45°;(2)GF=AG+CF,证明见解析;(3)①1; ②,理由见解析.
    【解析】
    (1)如图1中,连接BE.利用全等三角形的性质证明EB=ED,再利用等角对等边证明EB=EF即可解决问题.
    (2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,证明△GDH≌△GDF(SAS)即可解决问题.
    (3)①设CF=x,则AH=x,BF=1-x,GF=3+x,利用勾股定理构建方程求出x即可.
    ②设正方形边长为x,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.
    【详解】
    解:(1)如图1中,连接BE.
    ∵四边形ABCD是正方形,
    ∴CD=CB,∠ECD=∠ECB=45°,
    ∵EC=EC,
    ∴△ECB≌△ECD(SAS),
    ∴EB=ED,∠EBC=∠EDC,
    ∵∠DEF=∠DCF=90°,
    ∴∠EFC+∠EDC=180°,
    ∵∠EFB+∠EFC=180°,
    ∴∠EFB=∠EDC,
    ∴∠EBF=∠EFB,
    ∴EB=EF,
    ∴DE=EF,
    ∵∠DEF=90°,
    ∴∠EDF=45°
    故答案为45°.
    (2)猜想:GF=AG+CF.
    如图2中,将△CDF绕点D旋转90°,得△ADH,
    ∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,
    ∵∠DAC=90°,
    ∴∠DAC+∠DAH=180°,
    ∴H、A、G三点共线,
    ∴GH=AG+AH=AG+CF,
    ∵∠EDF=45°,
    ∴∠CDF+∠ADG=45°,
    ∴∠ADH+∠ADG=45°
    ∴∠GDH=∠EDF=45°
    又∵DG=DG
    ∴△GDH≌△GDF(SAS)
    ∴GH=GF,
    ∴GF=AG+CF.
    (3)①设CF=x,则AH=x,BF=1-x,GF=3+x,
    则有(3+x)2=(1-x)2+32,
    解得x=2
    ∴S△BFG=•BF•BG=1.
    ②设正方形边长为x,
    ∵AG=a,CF=b,
    ∴BF=x-b,BG=x-a,GF=a+b,
    则有(x-a)2+(x-b)2=(a+b)2,
    化简得到:x2-ax-bx=ab,
    ∴S=(x-a)(x-b)=(x2-ax-bx+ab)=×2ab=ab.
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
    15、(1)直线OB的解析式为,;(2)直线BD的解析式为,.
    【解析】
    (1)先利用待定系数法求直线OB的解析式,再利用两点间的距离公式计算出OB,然后根据折叠的性质得到BE=BC=6,从而可计算出OE=OB-BE=4;
    (2)设D(0,t),则OD=t,CD=8-t,根据折叠的性质得到DE=DC=8-t,∠DEB=∠DCB=90°,根据勾股定理得(8-t)2+42=t2,求出t得到D(0,5),于是可利用待定系数法求出直线BD的解析式;设E(x,),利用OE=4得到x2+()2=42,然后解方程求出x即可得到E点坐标.
    【详解】
    解:(1)设直线OB的解析式为,
    将点代入中,得,
    ∴,
    ∴直线OB的解析式为.
    ∵四边形OABC是矩形.且,
    ∴,,
    ∴,.
    根据勾股定理得,
    由折叠知,.

    (2)设D(0,t)

    ∴,
    由折叠知,,,
    在中,,
    根据勾股定理得,
    ∴,
    ∴,
    ∴,.
    设直线BD的解析式为.
    ∵,
    ∴,
    ∴,
    ∴直线BD的解析式为.
    由(1)知,直线OB的解析式为.
    设点,
    根据的面积得,
    ∴,
    ∴.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了矩形的性质和折叠的性质.
    16、小欣这学期的数学总评成绩为91分.
    【解析】
    根据加权平均数的计算公式即可得.
    【详解】
    由题意得:小欣这学期的数学总评成绩为(分)
    答:小欣这学期的数学总评成绩为91分.
    本题考查了加权平均数的应用,熟记公式是解题关键.
    17、 (1) 四边形是垂美四边形,理由见解析;(2)证明见解析;(3) .
    【解析】
    (1)根据垂直平分线的判定定理,可证直线是线段的垂直平分线,结合“垂美四边形”的定义证明即可;
    (2)根据垂直的定义和勾股定理解答即可;
    (3)连接、,先证明,得到∴,可证,即,从而四边形是垂美四边形,根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.
    【详解】
    (1)四边形是垂美四边形.
    证明:连接AC,BD,
    ∵,
    ∴点在线段的垂直平分线上,
    ∵,
    ∴点在线段的垂直平分线上,
    ∴直线是线段的垂直平分线,
    ∴,即四边形是垂美四边形;
    (2)猜想结论:垂美四边形的两组对边的平方和相等.
    如图2,已知四边形中,,垂足为,
    求证:
    证明:∵,
    ∴,
    由勾股定理得,,

    ∴;
    故答案为:.
    (3)连接、,
    ∵,
    ∴,即,
    在和中,,
    ∴,
    ∴,又,
    ∴,即,
    ∴四边形是垂美四边形,
    由(2)得,,
    ∵,,
    ∴,,,
    ∴,
    ∴.
    本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.
    18、(1);(2)按这种倒水方式,这1L水倒不完,见解析;(3)①x=;②
    【解析】
    (1)归纳总结得到一般性规律,写出即可;
    (2)根据题意列出关系式,利用得出的规律化简即可;
    (3)①方程变形后,利用得出的规律化简,计算即可求出解;
    ②原式利用得出的规律变形,计算即可求出值.
    【详解】
    (1)根据题意得:=-;
    (2)前n次倒出的水总量为+++…+=1-+-+-+…+-=1-=,
    ∵<1,
    ∴按这种倒水方式,这1L水倒不完;
    (3)①方程整理得:[(1-)+(-)+(-)+(-)]•=,
    [(1-)]•=,
    •=,
    解得:x=,
    经检验,x=是原方程的解,
    ∴原方程的解为x=;
    ②++…+
    =
    =(-)+(-)+(-)+…+[-]
    =[-]
    =.
    本题考查规律型:数字的变化类,解分式方程,分式的混合运算,解答本题的关键是根据所给式子找出规律,并利用规律解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4.1
    【解析】
    先根据勾股定理的逆定理判断出三角形是直角三角形,然后根据面积法求解.
    【详解】
    解:∵,
    ∴该三角形是直角三角形.
    根据面积法求解:
    S△ABC=AB•AC=BC•AD(AD为斜边BC上的高),
    即AD= =(cm).
    故答案为4.1.
    本题主要考查了勾股定理的逆定理,解题的关键是利用两种求三角形面积的方法列等式求解.
    20、.
    【解析】
    一次函数及其应用:用函数的观点看方程(组)或不等式.
    【详解】
    由图象得:
    ①的值随的值的增大而增大;
    ②;
    ③关于的方程的解为.
    故答案为:①②③.
    本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.
    21、2
    【解析】
    根据旋转的性质得到S△AED=S△AFB,根据四边形ABCD的面积是18cm1得出正方形AFCE的面积是18cm1,求出AE、EC的长,根据等腰直角三角形的性质求出AC即可.
    【详解】
    解:∵四边形AFCE是正方形,
    ∴AE=EC,∠E=90°,
    △ADE绕点A顺时针旋转90°,点D对应点交CF延长线于点B,
    ∴△ABF≌△ADE,
    ∴正方形AFCE的面积=四边形ABCD的面积=18cm1.
    ∴AE=CE==,
    ∴AC=AE=2cm.
    故答案为:2.
    本题考查了旋转的性质,全等三角形的性质,正方形性质,关键是求出正方形AFCE的边长.
    22、
    【解析】
    根据等边三角形的性质:三线合一,利用勾股定理可求解高.
    【详解】
    由题意得底边的一半是3,再根据勾股定理,得它的高为=3,
    故答案为3.
    本题考查的是等边三角形的性质,勾股定理,解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.
    23、7
    【解析】
    试题分析:如图,过点A做BC边上高,所以EP AM,所以∆BFP~∆BAM,∆CAM~CEP,因为AF=2,BF=3,AB=AC=5,所以, BM=CM,所以 ,因此CE=7
    二、解答题(本大题共3个小题,共30分)
    24、(1)k=﹣1,b=6;(2)满足条件的点D坐标是(12,﹣12)或(6,﹣6)
    【解析】
    (1)把P、Q的坐标代入反比例函数解析式可求得m、n的值,再把P、Q坐标代入直线解析式可求得k、b的值;
    (2)结合(1)可先求得A、B坐标,可求得C点坐标,再由条件可求得直线OD的解析式,由BO=CD可求得D点坐标.
    【详解】
    解:
    (1)把P(1,m)代入y= ,得 m=5,
    ∴P(1,5),
    把Q(n,1)代入y=,得 n=5,
    ∴Q(5,1),
    P(1,5)、Q(5,1)代入y=kx+b得 ,解得 ,
    即k=﹣1,b=6;
    (2)由(1)知 y=﹣x+6,
    ∴A(6,0)B(0,6)
    ∵C点在直线AB上,
    ∴设C(x,﹣x+6),
    由AB=AC得,
    解得x=12或x=0(不合题意,舍去),
    ∴C(12,﹣6),
    ∵直线OD∥BC 且过原点,
    ∴直线OD解析式为y=﹣x,
    ∴可设D(a,﹣a),
    由OB=CD 得6= ,
    解得a=12或a=6,
    ∴满足条件的点D坐标是(12,﹣12)或(6,﹣6)
    此题考查反比例函数与一次函数的交点问题,解题关键在于把已知点代入解析式
    25、(1)平行四边形;理由见解析;(2)当原四边形的对角线相等时,它的中点四边形是菱形;(3)当原四边形的对角线互相垂直时,它的中点四边形是矩形.
    【解析】
    (1)连接BD、由点E、H分别为边AB、AD的中点,同理知FG∥BD、FG=BD,据此可得EH=FG、EH∥FG,即可得证;
    (2)同理根据对角线相等,可知邻边相等,中点四边形是菱形;
    (3)同理根据对角线互相垂直,可知有一个角是直角,中点四边形是矩形.
    【详解】
    (1)任意四边形的中点四边形是平行四边形,理由是:
    如图1,连接BD,
    ∵点E、H分别为边AB、AD的中点,
    ∴EH∥BD、EH=BD,
    ∵点F、G分别为BC、DC的中点,
    ∴FG∥BD、FG=BD,
    ∴EH=FG、EH∥FG,
    ∴中点四边形EFGH是平行四边形;
    (2)当原四边形的对角线相等时,它的中点四边形是菱形;
    证明:与(1)同理:EH=FG=BD=AC=EF=HG,得它的中点四边形是菱形;
    (3)当原四边形的对角线互相垂直时,它的中点四边形是矩形;
    证明:与(1)同理:EH∥FG∥BD,AC∥EF∥HG,
    ∵AC⊥BD,
    ∴EH、FG分别与EF、HG垂直,
    ∴得它的中点四边形是矩形.
    本题主要考查中点四边形的综合问题,解题的关键是熟练掌握三角形中位线定理、平行四边形和菱形的判定与性质.
    26、
    【解析】
    设CE=EC'=x,则DE=3−x,由△ADB''∽△DEC,可得ADDE=DB'EC′,列出方程即可解决问题;
    【详解】
    设CE=EC'=x,则DE=3−x,
    ∵∠ADB'+∠EDC'=90°,∠B'AD+∠ADB'=90°,
    ∴∠B'AD=∠EDC',
    ∵∠B'=∠C'=90°,AB'=AB=3,AD=5,
    ∴DB'= = ,
    ∴△ADB'∽△DEC`,
    ∴ ,
    ∴ ,
    ∴x= .
    ∴CE=.
    此题考查翻折变换(折叠问题),相似三角形的判定与性质,解题关键在于利用勾股定理进行计算
    题号





    总分
    得分
    相关试卷

    山东省聊城市东阿县2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份山东省聊城市东阿县2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省聊城市城区2024-2025学年数学九年级第一学期开学学业水平测试试题【含答案】: 这是一份山东省聊城市城区2024-2025学年数学九年级第一学期开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省聊城市东阿县第三中学2023-2024学年八年级下学期开学考试数学试题(含答案): 这是一份山东省聊城市东阿县第三中学2023-2024学年八年级下学期开学考试数学试题(含答案),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map