山东省聊城市东昌府区2024-2025学年数学九上开学联考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用配方法解一元二次方程x2-8x+3=0,此方程可化为( )
A.(x-4)2=13B.(x+4)2=13C.(x-4)2=19D.(x+4)2=19
2、(4分)下列图形中,绕某个点旋转180°能与自身重合的图形有( )
(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.
A.2个 B.3个 C.4个 D.5个
3、(4分)若分式无意义,则( )
A.B.C.D.
4、(4分)如图,,,则( )
A.垂直平分B.垂直平分
C.平分D.以上结论均不对
5、(4分)用正三角形和正方形镶嵌一个平面,在同一个顶点处,正三角形和正方形的个数之比为( )
A.1:1B.1:2C.2:3D.3:2
6、(4分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E,若AB=3,则△AEC的面积为( )
A.3B.1.5C.2D.
7、(4分)已知直线l经过点A(4,0),B(0,3).则直线l的函数表达式为( )
A.y=﹣x+3B.y=3x+4C.y=4x+3D.y=﹣3x+3
8、(4分)不等式的解集在数轴上表示正确的是( )
A. B. C. D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.
10、(4分)各内角所对边的长分别为、、,那么角的度数是________。
11、(4分)已知,则 ___________ .
12、(4分)二次根式中,x的取值范围是________.
13、(4分)如图,在正方形中,点、在对角线上,分别过点、作边的平行线交于点、,作边的平行线交于点、. 若,则图中阴影部分图形的面积和为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.
(1)求6年1班40人一分钟内平均每人跳绳多少个?
(2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?
15、(8分)如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.
(1)求证:∠ABE=∠CAD;
(2)如图2,以AD为边向左作等边△ADG,连接BG.
ⅰ)试判断四边形AGBE的形状,并说明理由;
ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).
16、(8分)已知:如图,▱ABCD的对角线AC与BD相交于点O,过点O的直线与AD,BC分别相交于点E,F.
(1)求证:OE=OF;
(2)连接BE,DF,求证:BE=DF.
17、(10分)因式分解:
(1)2x3﹣8x;
(2)(x+y)2﹣14(x+y)+49
18、(10分)如图,已知在平面直角坐标系中,正比例函数与一次函数的图象相交于点,过点作轴的垂线,分别交正比例函数的图像于点B,交一次函数的图象于点C,连接OC.
(1)求这两个函数解析式.
(2)求的面积.
(3)在坐标轴上存在点,使是以为腰的等腰三角形,请直接写出点的坐标。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直线y=kx+b和直线y=-3x平行,且过点(0,-3),则此直线与x轴的交点坐标为________.
20、(4分)已知xy=﹣1,x+y=2,则x3y+x2y2+xy3=_____.
21、(4分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 ▲ 人.
22、(4分)把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为_____.
23、(4分)若关于的方程的解为正数,则的取值范围是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.
(1)求这两年该企业投入科研经费的年平均增长率;
(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.
25、(10分)设每个小正方形网格的边长为1,请在网格内画出,使它的顶点都在格点上,且三边长分别为2,,.
(1)求的面积;
(2)求出最长边上的高.
26、(12分)先化简÷,然后从1、2、3中选取一个你认为合适的数作为a的值代入求值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
移项后两边都加上一次项系数一半的平方,写成完全平方式即可.
【详解】
x2-8x=-3,
x2-8x+16=-3+16,
即(x-4)2=13,
故选A.
本题考查了运用配方法解方程,熟练掌握配方法是解题的关键.
2、C
【解析】
中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,根据中心对称图形的概念求解即可.
【详解】
解:
(1)正方形是中心对称图形;
(2)等边三角形不是中心对称图形;
(3)长方形是中心对称图形;
(4)角不是中心对称图形;
(5)平行四边形是中心对称图形;
(6)圆是中心对称图形.
所以一共有4个图形是中心对称图形.
故选:C.
本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、D
【解析】
根据分母等于零列式求解即可.
【详解】
由题意得
x-1=0,
∴.
故选D.
本题考查了分式有意义的条件,当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.
4、B
【解析】
根据段垂直平分线的判定定由AC=AD得到点A在线段CD的垂直平分线上,由BC=BD得到点B在线段CD的垂直平分线上,而两点确定一直线,所以可判断AB垂直平分CD.
【详解】
解:∵AC=AD,
∴点A在线段CD的垂直平分线上,
∵BC=BD,
∴点B在线段CD的垂直平分线上,
∴AB垂直平分CD.
故选:B.
本题考查了线段垂直平分线的判定与性质:到线段两端点的距离相等的点在这条线段的垂直平分线上;线段垂直平分线上任意一点,到线段两端点的距离相等.
5、D
【解析】
分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.
【详解】
解:正三角形的每个内角是,正方形的每个内角是,
,
用正三角形和正方形镶嵌平面,每一个顶点处有3个正三角形和2个正方形.
正三角形和正方形的个数之比为,
故选.
本题考查平面密铺的知识,比较简单,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
6、D
【解析】
解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,
∴在Rt△ACD中,∠ACD=30°,
即∠DAC=60°,
∴∠DAD′=60°,
∴∠DAE=30°,
∴∠EAC=∠ACD=30°,
∴AE=CE.
在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=.
根据勾股定理得:,
解得:x=2,
∴EC=2,
则S△AEC=EC•AD=.
故选D.
7、A
【解析】
根据已知条件可直接写出函数表达式,清楚y=kx+b中k和b与x轴y轴交点之间的关系即可求解
【详解】
解:∵A(4,0),B(0,3),
∴直线l的解析式为:y=﹣x+3;
故选:A.
此题主要考查一次函数的解析式,掌握k和b与直线与x轴y轴交点之间的关系是解题关键
8、A
【解析】
先求出不等式的解集,再在数轴上表示出来即可.
【详解】
移项得,,
合并同类项得,,
的系数化为1得,,
在数轴上表示为:
.
故选:.
本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、()n.
【解析】
第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.
【详解】
第1个正方形的边长是1,对角线长为;
第二个正方形的边长为,对角线长为()2=2
第3个正方形的边长是2,对角线长为2=()3;…,
∴第n个正方形的对角线长为()n;
故答案为()n.
本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.
10、
【解析】
根据勾股定理的逆定理判断即可.
【详解】
∵△ABC各内角A、B、C所对边的长分别为13、12、5,
∴52+122=132,
∴∠A=90°,
故答案为:90°
本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
11、
【解析】
将二次根式化简代值即可.
【详解】
解:
所以原式.
故答案为:
本题考查了二次根式的运算,将二次根式转化为和已知条件相关的式子是解题的关键.
12、
【解析】
根据二次根式有意义的条件进行求解即可得.
【详解】
根据题意,得
,
解得,,
故答案为:.
本题考查了二次根式有意义的条件,熟练掌握“式子叫二次根式、二次根式中的被开方数必须是非负数”是解题的关键.
13、2
【解析】
首先根据已知条件,可得出矩形BEPF和矩形BHQG是正方形,阴影部分面积即为△ABD的面积,即可得解.
【详解】
解:由已知条件,得∠DBC=∠ABD=∠BPE=∠BQH=45°,
∴矩形BEPF和矩形BHQG是正方形,
又∵BP、BQ分别为正方形BEPF和正方形BHQG的对角线
∴,
∴阴影部分的面积即为△ABD的面积,
∴
故答案为2.
此题主要考查正方形的判定,然后利用其性质进行等量转换,即可解题.
三、解答题(本大题共5个小题,共48分)
14、(1)40人一分钟内平均每人跳绳102;;(2)6(1)班能得到学校奖励.
【解析】
(1)根据加权平均数的计算公式进行计算即可;
(2)根据评分标准计算总积分,然后与1比较大小.
【详解】
解:(1)6(1)班40人中跳绳的平均个数为100+=102个,
答:40人一分钟内平均每人跳绳102;
(2)依题意得:(4×6+5×10+6×5)×3-(-2×6-1×12)×(-1)=288>1.
所以6(1)班能得到学校奖励.
本题考查了加权平均数,正负数在实际生活中的应用.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
15、(1)详见解析;(2)ⅰ)四边形AGBE是平行四边形,证明详见解析;ⅱ).
【解析】
(1)只要证明△BAE≌△ACD;
(2)ⅰ)四边形AGBE是平行四边形,只要证明BG=AE,BG∥AE即可;
ⅱ)求出四边形BGAE的周长,△ABC的周长即可;
【详解】
(1)证明:如图1中,
∵△ABC是等边三角形,
∴AB=AC,∠BAE=∠C=60°,
∵AE=CD,
∴△BAE≌△ACD,
∴∠ABE=∠CAD.
(2)ⅰ)如图2中,结论:四边形AGBE是平行四边形.
理由:∵△ADG,△ABC都是等边三角形,
∴AG=AD,AB=AC,
∴∠GAD=∠BAC=60°,
∴△GAB≌△DAC,
∴BG=CD,∠ABG=∠C,
∵CD=AE,∠C=∠BAE,
∴BG=AE,∠ABG=∠BAE,
∴BG∥AE,
∴四边形AGBE是平行四边形,
ⅱ)如图2中,作AH⊥BC于H.
∵BH=CH=
∴
∴
∴四边形BGAE的周长=,△ABC的周长=3(k+1),
∴四边形AGBE与△ABC的周长比=
本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
16、(1)见解析;(2)见解析.
【解析】
由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,又由OE⊥AD,OF⊥BC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF;
由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OB=OD,
又由OE=OF,可证得四边形DEBF是平行四边形,由平行四边形的性质可得BE=DF.
【详解】
证明:∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠OAF=∠OCE,
在△OAF和△OCE中,
,
∴△AOF≌△COE(ASA),
∴OE=OF;
(2)证明:∵四边形ABCD是平行四边形,
∴OB=OD,∵OE=OF,
∴四边形DEBF是平行四边形,
∴BE=DF.
本题考查的知识点是平行四边形的性质,解题关键是熟记平行四边形性质.
17、(1)1x(x+1)(x﹣1);(1)(x+y﹣7)1.
【解析】
(1)首先提取公因式1x,再利用平方差公式完全平方公式分解因式得出答案;
(1)直接利用完全平方公式分解因式得出答案.
【详解】
解:(1)原式=1x(x1﹣4)
=1x(x+1)(x﹣1);
(1)原式=(x+y﹣7)1.
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
18、(1)正比例函数解析式为;一次函数解析式为;(2);(3)M(10,0)或M(-10,0)或M(0,10)或M(0,-10)或(16,0)或(0,12)
【解析】
(1)将A点坐标分别代入正比例函数和一次函数解析式,即可得解;
(2)首先根据题意求出点B和C的坐标,即可得出BC,进而得出△OBC的面积;
(3)首先根据点A坐标求出OA,即可得出腰长,然后分情况讨论:x轴和y轴,即可得解.
【详解】
(1)根据题意,将分别代入正比例函数和一次函数解析式,得
,解得
正比例函数解析式为
,解得
一次函数解析式为
(2)根据题意,得
,
∴
∴
(3)根据题意,得OA=10
当点M在x轴上时,其坐标为M(10,0)或M(-10,0)或(16,0);
当点M在y轴上时,其坐标为M(0,10)或M(0,-10)或(0,12);
故点M的坐标为(10,0)或(-10,0)或(0,10)或(0,-10)或(16,0)或(0,12)
此题主要考查正比例函数和一次函数的性质,熟练运用,即可解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (−1,0).
【解析】
先根据直线平行的问题得到k=-3,再把(0,-3)代入y=-3x+b求出b,从而得到直线解析式,然后计算函数值为0所对应的自变量的值即可得到直线与x轴的交点坐标.
【详解】
∵直线y=kx+b和直线y=−3x平行,
∴k=−3,
把(0,−3)代入y=−3x+b得b=−3,
∴直线解析式为y=−3x−3,
当y=0时,−3x−3=0,解得x=−1,
∴直线y=−3x−3与x轴的交点坐标为(−1,0).
故答案为(−1,0).
此题考查两条直线相交或平行问题,把已知点代入解析式是解题关键
20、-2
【解析】
先提公因数法把多项式x3y+x2y2+xy3因式分解,再根据完全平方公式因式分解即可求解.
【详解】
解:∵xy=﹣1,x+y=2,
∴x3y+x2y2+xy3=
代入数据,原式=
故答案为:.
本题考查了因式分解,先提公因式,然后再套完全平方公式即可求解.
21、216
【解析】
由题意得,50个人里面坐公交车的人数所占的比例为:15/50 =30%,
故全校坐公交车到校的学生有:720×30%=216人.
即全校坐公交车到校的学生有216人.
22、y=﹣x+1
【解析】
根据“上加下减”的平移规律可直接求得答案.
【详解】
解:把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为y=﹣x﹣1+2,即y=﹣x+1.
故答案为:y=﹣x+1.
本题考查一次函数图象与几何变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.
23、且
【解析】
首先去分母化成整式方程,求得x的值,然后根据方程的解大于0,且x-1≠0即可求得m的范围.
【详解】
解:去分母,得1x+m=3(x-1),
去括号,得1x+m=3x-3,
解得:x=m+3,
根据题意得:m+3-1≠0且m+3>0,
解得:m>-3且m≠-1.
故答案是:m>-3且m≠-1.
本题考查了分式方程的解,注意:忽视x-1≠0是本题的易错点.
二、解答题(本大题共3个小题,共30分)
24、(1)这两年该企业投入科研经费的年平均增长率为20%;(2)2019年该企业投入科研经费8640万元.
【解析】
(1)设这两年该企业投入科研经费的年平均增长率为x,根据2016年及2018年投入科研经费,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),即可求出结论.
【详解】
解:(1)设这两年该企业投入科研经费的年平均增长率为x,
根据题意得:5000(1+x)2=7200,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:这两年该企业投入科研经费的年平均增长率为20%.
(2)7200×(1+20%)=8640(万元).
答:2019年该企业投入科研经费8640万元.
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),列式计算.
25、(1);作图如图;(1).
【解析】
(1)因为每个小正方形网格的边长为1,利用勾股定理,首先作出
最长边,同理即可作出,;
(1)根据三角形面积不变,设出最长边上的高,根据三角形面积公式,即可求解.
【详解】
解(1)作图如图:,,,
由图可知:,
即.
故的面积为1.
(1)设最长边上的高为,而最长边为,
∴,
解得.
故最长边上的高为.
本题目考查二次根式与勾股定理的综合,难度不大,熟练掌握勾股定理的逆用是顺利解题的关键.
26、, 1.
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=×=×=
要使原分式有意义,故a=3,∴当a=3 时,原式=1.
题号
一
二
三
四
五
总分
得分
山东省聊城市茌平县2024-2025学年九上数学开学检测模拟试题【含答案】: 这是一份山东省聊城市茌平县2024-2025学年九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省冠县联考2024-2025学年九上数学开学达标检测模拟试题【含答案】: 这是一份山东省冠县联考2024-2025学年九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年山东省聊城市东昌府区等九校联考九年级(上)期中数学试卷: 这是一份2023-2024学年山东省聊城市东昌府区等九校联考九年级(上)期中数学试卷,共19页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。