山东省济宁汶上县联考2024年九年级数学第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若解关于x的方程时产生增根,那么常数m的值为( )
A.4B.3C.-4D.-1
2、(4分)赵老师是一名健步走运动的爱好者为备战2019中国地马拉松系列赛·广元站10千米群众健身赛,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图在每天健步走的步数这组数据中,众数和中位数分别是( )
A.2.2,2.3B.2.4,2.3C.2.4,2.35D.2.3,2.3
3、(4分)直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是( )
A.5B.6C.6.5D.13
4、(4分)正方形面积为,则对角线的长为( )
A.6B.C.9D.
5、(4分)下列二次根式计算正确的是( )
A.-=1B.+=C.×=D.÷=
6、(4分)当有意义时,a的取值范围是( )
A.a≥2B.a>2C.a≠2D.a≠-2
7、(4分)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管( )根.
A.2B.4C.5D.无数
8、(4分)下列函数中,一次函数是( ).
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.
10、(4分)式子在实数范围内有意义,则 x 的取值范围是_______ .
11、(4分)已知一次函数y=x+b的图象经过第一、二、三象限,写出一个符合条件的b的值为_____.
12、(4分)若已知a,b为实数,且=b﹣1,则a+b=_____.
13、(4分)如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(阅读理解题)在解分式方程时,小明的解法如下:
解:方程两边都乘以x﹣3,得2﹣x=﹣1﹣2①.移项得﹣x=﹣1﹣2﹣2②.解得x③.
(1)你认为小明在哪一步出现了错误? (只写序号),错误的原因是 .
(2)小明的解题步骤完善吗?如果不完善,说明他还缺少哪一步?答: .
(3)请你解这个方程.
15、(8分)解不等式组并求其整数解的和.
解:解不等式①,得_______;
解不等式②,得________;
把不等式①和②的解集在数轴上表示出来:
原不等式组的解集为________,
由数轴知其整数解为________,和为________.
在解答此题的过程中我们借助于数轴上,很直观地找出了原不等式组的解集及其整数解,这就是“数形结合的思想”,同学们要善于用数形结合的思想去解决问题.
16、(8分)如图,在正方形ABCD中,对角线AC,BD相较于点O,的角平分线BF交CD于点E,交AC于点F
求证:;
若,求AB的值
17、(10分)解方程:(1-3y)2+2(3y-1)=1.
18、(10分)计算:(4+)(4﹣)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将直线向上平移个单位后,可得到直线_______.
20、(4分)已知为实数,且,则______.
21、(4分)在结束了初中阶段数学内容的新课教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则唐老师安排复习“统计与概率”内容的时间为______课时.
22、(4分)若有意义,则x的取值范围是____.
23、(4分)菱形ABCD的对角线cm,,则其面积等于______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,某一时刻垂直于地面的大楼的影子一部分在地上,另一部分在斜坡上.已知坡角,米,米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度.
25、(10分)如图是某港口在某天从0时到12时的水位情况变化曲线.
(1)在这一问题中,自变量是什么?
(2)大约在什么时间水位最深,最深是多少?
(3)大约在什么时间段水位是随着时间推移不断上涨的?
26、(12分)求证:取任何实数时,关于的方程总有实数根.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
方程两边同乘,将分式方程化为整式方程,解整式方程,再由增根为2,建立关于m的方程求解即可.
【详解】
解得
∵原分式方程的增根为2
∴
∴
故选:D
本题考查分式方程的增根问题,熟练掌握解分式方程,熟记增根的定义建立关于m的方程是解题的关键.
2、B
【解析】
中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.
【详解】
由条形统计图中出现频数最大条形最高的数据是在第四组,故众数是2.4(万步);
因图中是按从小到大的顺序排列的,最中间的步数都是2.3(万步),故中位数是2.3(万步).
故选B.
此题考查中位数,条形统计图,解题关键在于看懂图中数据
3、C
【解析】
根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解
【详解】
∵直角三角形两直角边长为5和12
∴斜边=13
∴此直角三角形斜边上的中线的长=6.5
故答案为:C
此题考查直角三角形斜边上的中线和勾股定理,解题关键在于掌握直角三角形斜边上的中线等于斜边的一半
4、B
【解析】
根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.
【详解】
设对角线长是x.则有
x2=36,
解得:x=6.
故选B.
本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.
5、C
【解析】
本题需根据二次根式的乘除法和加减法分别进行判断,即可求出正确答案.
【详解】
A、∵-≠,故本选项错误;
B、∵+≠,故本选项错误;
C、∵×=.故本选项正确;
D、÷=≠,故本选项错误;
故选C.
本题主要考查了二次根式的乘除法和加减法,在解题时要注意知识的综合应用是本题的关键.
6、B
【解析】
根据二次根式及分式有意义的条件即可解答.
【详解】
∵有意义,
∴a-2>0,
∴a>2.
本题考查了二次根式及分式有意义的条件,熟知二次根式及分式有意义的条件是解决问题的关键.
7、C
【解析】
分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.
详解:如图所示,∠AOB=15°,
∵OE=FE,
∴∠GEF=∠EGF=15°×2=30°,
∵EF=GF,所以∠EGF=30°
∴∠GFH=15°+30°=45°
∵GH=GF
∴∠GHF=45°,∠HGQ=45°+15°=60°
∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,
∵QH=QB
∴∠QBH=75°,∠HQB=180-75°-75°=30°,
故∠OQB=60°+30°=90°,不能再添加了.
故选C.
点睛:根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答.
8、A
【解析】
根据一次函数的定义分别进行判断即可.
【详解】
解:.是一次函数,故正确;
.当时,、是常数)是常函数,不是一次函数,故错误;
.自变量的次数为,不是一次函数,故错误;
.属于二次函数,故错误.
故选:.
本题主要考查了一次函数的定义,一次函数的定义条件是:、为常数,,自变量次数为1.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、110°
【解析】
已知∠1=20°,可求得∠3=90°-20°=70°,再由矩形的对边平行,根据两直线平行,同旁内角互补可得∠2+∠3=180°,即可得∠2=110°.
10、x≥1
【解析】
直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.
【详解】
由题意可得:x﹣1≥0,
解得:x≥1,
故答案为:x≥1.
本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.
11、2
【解析】
图象经过一、三象限,还过第二象限,所以直线与y轴的交点在正半轴上,则b>2.
【详解】
解:∵图象经过第一、二、三象限,
∴直线与y轴的交点在正半轴上,则b>2.
∴符合条件的b的值大于2即可.
∴b=2,
故答案为2.
考查了一次函数图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数及常数是大于2或是小于2.
12、6
【解析】
根据二次根式被开方数为非负数可得关于a的不等式组,继而可求得a、b的值,代入a+b进行计算即可得解.
【详解】
由题意得:,
解得:a=5,
所以:b=1,
所以a+b=6,
故答案为:6.
本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.
13、(0,1).
【解析】
试题分析:根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
试题解析:如图,
连接AD、BE,作线段AD、BE的垂直平分线,
两线的交点即为旋转中心O′.其坐标是(0,1).
考点: 坐标与图形变化-旋转.
三、解答题(本大题共5个小题,共48分)
14、(1)①;﹣2没有乘以最简公分母;(2)小明得解题步骤不完善,少了检验;(3)分式方程无解.
【解析】
(1)出现错误的步骤为第一步,原因是各项都要乘以最简公分母;
(2)不完善,最后没有进行检验;
(3)写出正确解题过程即可.
【详解】
解:(1)出现错误的为①,原因是﹣2没有乘以最简公分母;
故答案为:①;﹣2没有乘以最简公分母;
(2)小明得解题步骤不完善,少了检验;
(3)去分母得:2﹣x=﹣1﹣2(x﹣3),
去括号得:2﹣x=﹣1﹣2x+6,
移项合并得:x=3,
经检验x=3是增根,分式方程无解.
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
15、详见解析.
【解析】
先求出不等式组的解集,然后找出其中的整数相加即可.
【详解】
,
解:解不等式①,得x≥-5;
解不等式②,得x<2,;
把不等式①和②的解集在数轴上表示出来:
原不等式组的解集为-5≤x<2,
由数轴知其整数解为-5,-4,-3,-2,-1,0,1,和为-5-4-3-2-1+0+1=-14.
本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.
16、(1)详见解析;(2).
【解析】
根据正方形的性质得到,由角平分线的定义得到,求得,于是得到结论;
如图作交BD于点首先证明是等腰直角三角形,推出,求出OB即可解决问题.
【详解】
证明:,BD是正方形的对角线,
,
平分,
;
,,
,
;
解解:如图,作交BD于点H.
四边形ABCD是正方形,
,,
,
,,
,
,,
平分,
,
,
,
.
本题考查正方形的性质,角平分线的定义,勾股定理,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
17、
【解析】
先变形,再分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
解:
本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.
18、1.
【解析】
根据运算法则一一进行计算.
【详解】
原式=42﹣()2=16﹣7=1.
本题考查了等式的运算法则,熟练掌握等式的运算法则是本题解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据“上加下减”原则进行解答即可.
【详解】
由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即
故答案为:
本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.
20、或.
【解析】
根据二次根式有意义的条件可求出x、y的值,代入即可得出结论.
【详解】
∵且,∴,∴,∴或.
故答案为:或.
本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x、y的值.
21、1
【解析】
先计算出“统计与概率”内容所占的百分比,再乘以10即可.
【详解】
解:依题意,得(1-45%-5%-40%)×10=10%×10=1.
故答案为1.
本题考查扇形统计图及相关计算.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
22、x≥1.
【解析】
直接利用二次根式有意义的条件进而分析得出答案.
【详解】
∵有意义,∴x≥1,
故答案为:x≥1.
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
23、
【解析】
根据菱形的性质,菱形的面积等于两条对角线乘积的一半,代入数值计算即可。
【详解】
解:菱形ABCD的面积=
=
=
本题考查了菱形的性质:菱形的面积等于两条对角线乘积的一半。
二、解答题(本大题共3个小题,共30分)
24、24米
【解析】
过点D作DH⊥CE,DG⊥AC,在两个直角三角形中分别求得DH=2,BH=2,然后根据同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求得AG=GD=BC+BH=22米,最后求得大楼的高度即可.
【详解】
解:过点作.
∵,
∴.
∵同一时刻1米的标杆影长为1米,
∴.
∴楼高(米).
本题考查了解直角三角形的应用,正确的构造两个直角三角形是解题的关键.
25、(1)自变量是时间;(2)大约在3时水位最深,最深是8米;(3)在0到3时和9到12时,水位是随着时间推移不断上涨的.
【解析】
(1)根据函数图象,可以直接写出自变量;
(2)根据函数图象中的数据可以得到大约在什么时间水位最深,最深是多少;
(3)根据函数图象,可以写出大约在什么时间段水位是随着时间推移不断上涨的.
【详解】
(1)由图象可得,
在这一问题中,自变量是时间;
(2)大约在3时水位最深,最深是8米;
(3)由图象可得,
在0到3时和9到12时,水位是随着时间推移不断上涨的.
本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
26、见解析
【解析】
由a是二次项的系数,分a=0及两种情况分别确定方程的根的情况即可得到结论.
【详解】
当时,方程为,;
当,方程为一元二次方程,
,原方程有实数根.
综上所述,取任何值时,原方程都有实数根.
此题考查方程的根的情况,正确理解题意分情况解答是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2025届山东省济宁鱼台县联考九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2025届山东省济宁鱼台县联考九年级数学第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省济宁市名校九上数学开学达标检测模拟试题【含答案】: 这是一份2025届山东省济宁市名校九上数学开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省济宁市汶上县九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年山东省济宁市汶上县九上数学开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。