山东省济宁兖州区七校联考2025届九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是( )
A.2个B.3个C.4个D.5个
2、(4分)下列关于x的方程是一元二次方程的是
A.B.
C.D.
3、(4分)如图,已知一组平行线a//b//c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=2,BC=3,DE=l.6,则EF=( )
A.2.4B.1.8C.2.6D.2.8
4、(4分)若a<b,则下列结论不一定成立的是( )
A.B.C. D.
5、(4分)下列分式中,是最简分式的是( )
A.B.C.D.
6、(4分)在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
A.k>1B.k>0C.k≥1D.k<1
7、(4分)某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是( )
A.第一天B.第二天C.第三天D.第四天
8、(4分)下列手机手势解锁图案中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分式的值为0,那么x的值为_____.
10、(4分) “对顶角相等”的逆命题是________命题(填真或假)
11、(4分)抛物线,当时,的取值范围是__________.
12、(4分)如图,在正方形中,点、在对角线上,分别过点、作边的平行线交于点、,作边的平行线交于点、. 若,则图中阴影部分图形的面积和为_____.
13、(4分)如图,点的坐标为,则线段的长度为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,矩形的顶点在轴的正半轴上,顶点在轴的正半轴上,是边上的一点,,.反比例函数在第一象限内的图像经过点,交于点,.
(1)求这个反比例函数的表达式,
(2)动点在矩形内,且满足.
①若点在这个反比例函数的图像上,求点的坐标,
②若点是平面内一点,使得以、、、为顶点的四边形是菱形,求点的坐标.
15、(8分)已知如图,在正方形中,为的中点,,平分并交于.求证:
16、(8分) “赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表
第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:
(1)填空:a= 所抽取的40名学生比赛成绩的中位数是
(2)请将频数分布直方图补充完整
(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?
17、(10分)某经销商从市场得知如下信息:
他现有40000元资金可用来一次性购进该品牌空调扇和电风扇共100台,设该经销商购进空调扇台,空调扇和电风扇全部销售完后获得利润为元.
(1)求关于的函数解析式;
(2)利用函数性质,说明该经销商如何进货可获利最大?最大利润是多少元?
18、(10分)如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.
(1)求证:△PMN为等腰直角三角形;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)因式分解:3x3﹣12x=_____.
20、(4分)如图所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=_______.
21、(4分)已知一组数据,,,,,,则这组数据的众数是________.
22、(4分)菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC,CE,则△ACE的面积为___________.
23、(4分)计算:_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.
(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;
(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.
25、(10分)已知一次函数的图象经过点(1,3)与(﹣1,﹣1)
(1)求这个一次函数的解析式;
(2)试判断这个一次函数的图象是否经过点(﹣,0)
26、(12分)据大数据统计显示,某省2016年公民出境旅游人数约100万人次,2017年与2018年两年公民出境旅游总人数约264万人次,若这两年公民出境旅游总人数逐年递增,请解答下列问题:
(1)求这两年该省公民出境旅游人数的年平均增长率;
(2)如果2019年仍保持相同的年平均增长率,请你预测2019年该省公民出境旅游人数约多少万人次?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=即可得出结论.
【详解】
①正确.理由:
∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);
②正确.理由:
∵∠BAG=∠FAG,∠DAE=∠FAE.
又∵∠BAD=90°,∴∠EAG=45°;
③正确.理由:
设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;
④正确.理由:
∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.
又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
⑤正确.理由:
∵S△ECG=GC•CE=×6×8=1.
∵S△FCG===.
故选D.
本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.
2、C
【解析】
只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程一元二次方程有三个特点:只含有一个未知数;未知数的最高次数是2;是整式方程.
【详解】
A、是一元一次方程,故A不符合题意;
B、时是一元一次方程,故B不符合题意;
C、是一元二次方程,故C符合题意;
D、是二元二次方程,故D不符合题意;
故选:C.
此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理如果能整理为的形式,则这个方程就为一元二次方程.
3、A
【解析】
根据平行线分线段成比例定理得到,然后利用比例性质可求出EF的长.
【详解】
解:∵a∥b∥c,
∴,
即,
∴EF=2.1.
故选:A.
本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.
4、D
【解析】
由不等式的性质进行计算并作出正确的判断.
【详解】
A. 在不等式aB. 在不等式aC. 在不等式aD. 当a=−5,b=1时,不等式a2
本题考查不等式的性质,在利用不等式的性质时需注意,在给不等式的两边同时乘以或除以某数(或式)时,需判断这个数(或式)的正负,从而判断改不改变不等号的方向.解决本题时还需注意,要判断一个结论错误,只需要举一个反例即可.
5、D
【解析】
根据最简分式的定义:分子和分母没有公因式的分式,据此解答即可.
【详解】
A.=,故该选项不是最简分式,不符合题意,
B.==-1,故该选项不是最简分式,不符合题意,
C.==x+2,故该选项不是最简分式,不符合题意,
D.不能化简,是最简分式,符合题意.
故选D.
本题考查最简分式的定义,分子和分母没有公因式的分式叫做最简分式;最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.
6、A
【解析】
根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
【详解】
解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
即可得k﹣1>0,
解得k>1.
故选A.
【点评】
本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
7、B
【解析】
根据图象中的信息即可得到结论.
【详解】
由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,
故选B.
8、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,也是中心对称图形,故此选项正确;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选:C.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
解:由题意可得:x2﹣9=1且x+2≠1,
解得x=2.
故答案为:2.
此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.
10、假
【解析】
先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.
【详解】
命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.
故答案为:假.
考查命题与定理,写出原命题的逆命题是解题的关键.
11、
【解析】
首先根据二次函数的的二次项系数大于零,可得抛物线开口向下,再计算抛物线的对称轴 ,判断范围内函数的增减性,进而计算y的范围.
【详解】
解:根据二次函数的解析式可得
由a=2>0,可得抛物线的开口向上
对称轴为:
所以可得在范围内,二次函数在 ,y随x的增大而减小,在 上y随x的增大而增大.
所以当 取得最小值,最小值为:
当取得最大值,最大值为:
所以
故答案为
本题主要考查抛物线的性质,关键在于确定抛物线的开口方向,对称轴的位置,进而计算y的范围.
12、2
【解析】
首先根据已知条件,可得出矩形BEPF和矩形BHQG是正方形,阴影部分面积即为△ABD的面积,即可得解.
【详解】
解:由已知条件,得∠DBC=∠ABD=∠BPE=∠BQH=45°,
∴矩形BEPF和矩形BHQG是正方形,
又∵BP、BQ分别为正方形BEPF和正方形BHQG的对角线
∴,
∴阴影部分的面积即为△ABD的面积,
∴
故答案为2.
此题主要考查正方形的判定,然后利用其性质进行等量转换,即可解题.
13、
【解析】
根据勾股定理计算即可.
【详解】
解:∵点A坐标为(2,2),
∴AO=,
故答案为:.
本题考查了勾股定理的运用和点到坐标轴的距离:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)① ;②
【解析】
(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m−6,n),利用反比例函数图象上点的坐标特征可求出m的值,结合OC:CD=5:3可求出n值,再将m,n的值代入k=mn中即可求出反比例函数的表达式;
(2)由三角形的面积公式、矩形的面积公式结合S△PAO=S四边形OABC可求出点P的纵坐标.
①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;
②由点A,B的坐标及点P的纵坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,2),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用勾股定理可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用勾股定理可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.综上,此题得解.
【详解】
解:(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m−6,n).
∵点D,E在反比例函数的图象上,
∴k=mn=(m−6)n,
∴m=1.
∵OC:CD=5:3,
∴n:(m−6)=5:3,
∴n=5,
∴k=mn=×1×5=15,
∴反比例函数的表达式为y=;
(2)∵S△PAO=S四边形OABC,
∴OA•yP=OA•OC,
∴yP=OC=2.
①当y=2时,=2,
解得:x=,
∴若点P在这个反比例函数的图象上,点P的坐标为(,2).
②由(1)可知:点A的坐标为(1,0),点B的坐标为(1,5),
∵yP=2,yA+yB=5,
∴y P≠,
∴AP≠BP,
∴AB不能为对角线.
设点P的坐标为(t,2).
分AP=AB和BP=AB两种情况考虑(如图所示):
(i)当AB=AP时,(1−t)2+(2−0)2=52,
解得:t1=6,t2=12(舍去),
∴点P1的坐标为(6,2),
又∵P1Q1=AB=5,
∴点Q1的坐标为(6,1);
(ii)当BP=AB时,(1−t)2+(5−1)2=52,
解得:t3=1−2,t2=1+2(舍去),
∴点P2的坐标为(1−2,2).
又∵P2Q2=AB=5,
∴点Q2的坐标为(1−2,−1).
综上所述:点Q的坐标为(6,1)或(1−2,−1).
本题考查了反比例函数图象上点的坐标特征、三角形的面积、矩形的面积、菱形的性质以及勾股定理,解题的关键是:(1)利用反比例函数图象上点的坐标特征,求出点B的横纵坐标;(2)①由点P的纵坐标,利用反比例函数图象上点的坐标特征求出点P的坐标;②分AP=AB和BP=AB两种情况,利用勾股定理及菱形的性质求出点Q的坐标.
15、见解析
【解析】
取DA的中点F,连接FM,根据正方形的性质可得DA=AB,∠A=∠ABC=∠CBE=90°,然后利用ASA即可证出△DFM≌△MBN,再根据全等三角形的性质即可得出结论.
【详解】
解:取DA的中点F,连接FM
∵四边形是正方形
∴DA=AB,∠A=∠ABC=∠CBE=90°
∴∠FDM+∠AMD=90°
∵
∴∠BMN+∠AMD=90°
∴∠FDM=∠BMN
∵点F、M分别是DA、AB的中点
∴DF=FA=DA=AB=AM=MB
∴△AFM为等腰直角三角形
∴∠AFM=45°
∴∠DFM=180°-∠AFM=135°
∵平分
∴∠CBN==45°
∴∠MBN=∠ABC+∠CBN=135°
∴∠DFM=∠MBN
在△DFM和△MBN中
∴△DFM≌△MBN
∴
此题考查的是正方形的性质和全等三角形的判定及性质,掌握正方形的性质和构造全等三角形的方法是解决此题的关键.
16、(1)6,78;(2)见解析;(3)240名
【解析】
(1)根据题意和频数分布表中的数据可以求得a的值和这组数据的中位数;
(2)根据(1)中a的值和分布表中成绩为76≤x<84的频数可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据可以计算出进入决赛的学生中有多少名学生的比赛成绩为优秀.
【详解】
解:(1)a=40﹣4﹣8﹣12﹣10=6,
∵第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,
∴中位数是78,
故答案为:6,78;
(2)由(1)知a=6,
补全的频数分布直方图如右图所示;
(3)600×=240(名),
答:进入决赛的学生中有240名学生的比赛成绩为优秀.
本题考查频数分布直方图、频数分布表、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.
17、(1)y=140x+6000(0<x≤50);(2)购进该品牌空调扇和电风扇各50台时,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润y=(空调扇售价﹣空调扇进价)×空调扇的数量+(电风扇售价﹣电风扇进价)×电风扇的数量,根据总资金不超过40000元得出x的取值范围,列式整理即可;
(2)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000,其中700x+100(100﹣x)≤40000,解得:x≤50,即y=140x+6000(0<x≤50);
(2)∵y=140x+6000,k=140>0,∴y随x的增大而增大,∴x=50时,y取得最大值,此时100﹣x=100﹣50=50(台)
又∵140×50+6000=13000,∴选择购进该品牌空调扇和电风扇各50台时,经销商可获利最大,最大利润是13000元.
本题考查了一次函数的实际应用,难度适中,得出商场获得的利润y与购进空调扇x的函数关系式是解题的关键.在解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.
18、 (1)证明见解析;(2)成立,理由见解析.
【解析】
(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN,于是得到结论;
(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明.
【详解】
(1)∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中,
,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠EAC=∠CBD,
∵∠CBD+∠BDC=90°,
∴∠EAC+∠BDC=90°,
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,
∴PM=BD,PN=AE,
∴PM=PN,
∵PM∥BD,PN∥AE,
∴∠NPD=∠EAC,∠MPA=∠BDC,
∵∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,
∴∠MPN=90°,
即PM⊥PN,
∴△PMN为等腰直角三角形;
(2)①中的结论成立,
理由:设AE与BC交于点O,如图②所示:
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
∴∠ACE=∠BCD,
在△ACE和△BCD中,
,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠CAE=∠CBD.
∵∠AOC=∠BOE,∠CAE=∠CBD,
∴∠BHO=∠ACO=90°,
∴AE⊥BD,
∵点P、M、N分别为AD、AB、DE的中点,
∴PM=BD,PM∥BD,PN=AE,PN∥AE,
∴PM=PN.
∵AE⊥BD,
∴PM⊥PN,
∴△PMN为等腰直角三角形.
本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质以及三角形中位线定理等知识;熟练掌握等腰直角三角形的性质,证明三角形全等是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3x(x+2)(x﹣2)
【解析】
先提公因式3x,然后利用平方差公式进行分解即可.
【详解】
3x3﹣12x
=3x(x2﹣4)
=3x(x+2)(x﹣2),
故答案为3x(x+2)(x﹣2).
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
20、
【解析】
解:∵四边形ABCD为正方形,∴∠ABC=90°.∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=PB=.
故答案为.
点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等腰直角三角形性质.
21、45
【解析】
根据众数的概念:一组数据中出现次数最多的数值即为众数,即可得到答案
【详解】
解:∵这组数据中45出现两次,出现次数最多
∴众数是45
故答案为45
本题考查众数的概念,熟练掌握众数的概念为解题关键
22、9或.
【解析】
分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.
【详解】
解:①如图1,延长EA交DC于点F,
∵菱形ABCD的周长为24,
∴AB=BC=6,
∵∠ABC=60°,
∴三角形ABC是等边三角形,
∴∠BAC=60°,
当EA⊥BA时,△ABE是等腰直角三角形,
∴AE=AB=AC=6,∠EAC=90°+60°=150°,
∴∠FAC=30°,
∵∠ACD=60°,
∴∠AFC=90°,
∴CF=AC=3,
则△ACE的面积为:AE×CF=×6×3=9;
②如图2,过点A作AF⊥EC于点F,
由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,
∵AB=BE=BC=6,
∴∠BEC=∠BCE=15°,
∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,
∴AF=AE,AF=CF=AC=,
∵AB=BE=6,
∴AE=,
∴EF=,
∴EC=EF+FC=
则△ACE的面积为:EC×AF=.
故答案为:9或.
本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.
23、2
【解析】
先把二次根式化为最简二次根式,然后将括号内的式子进行合并,最后进一步加以计算即可.
【详解】
原式
,
故答案为:2.
本题主要考查了二次根式的混合运算,熟练掌握相关运算法则是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)7800元;(2)购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54;47,53;48,1.
【解析】
(1)购买温馨提示牌的费用+购买垃圾箱的费用即为所需的购买费用
(2)温馨提示牌为x个,则垃圾箱为(100-x)个,根据该小区至多安放48个温馨提示牌,且费用不超过6300元,建立不等式组,根据为整数可得到4种购买方案.
【详解】
(1)(元)
答:所需的购买费用为7800元 .
(2)设温馨提示牌为x个,则垃圾箱为(100-x)个,由题意得:
,
解得:
∵为整数
∴
∴购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54;47,53;48,1.
本题主要考查一元一次不等式组的应用以及方案问题,读懂题目,找出题目中的不等关系列出不等式是解题的关键.
25、(1)y=2x+1;(2)经过点(-,0).
【解析】
(1)设一次函数的解析式为:y=kx+b,把点(1,3)与(﹣1,﹣1)代入求出k和b即可;
(2)当x=-时,求出y的值,即可判断出.
【详解】
解:(1)设一次函数的解析式为:y=kx+b,
把点(1,3)与(﹣1,﹣1)代入解析式可得: ,
解得:k=2,b=1,
所以直线的解析式为:y=2x+1;
(2)因为在y=2x+1中,当x=﹣时,y=0,
所以一次函数的图象经过点(﹣,0).
求一次函数的解析式并根据解析式判断图象是否经过某点是本题的考点,待定系数法求出一次函数解析式是解题的关键.
26、 (1)这两年公民出境旅游总人数的年平均增长率为20%;
(2)约172.8万人次.
【解析】
(1)根据题意可以列出相应的一元二次方程,从而可以解答本题;
(2)根据(1)中的增长率即可解答本题.
【详解】
(1)设这两年该省公民出境旅游人数的年平均增长率为x,
100(1+x)+100(1+x)2=264,
解得,x1=0.2,x2=−3.2 (不合题意,舍去),
答:这两年公民出境旅游总人数的年平均增长率为20%;
(2)如果2019年仍保持相同的年平均增长率,
则2019年该省公民出境旅游人数为:100(1+x)3=100×(1+20%)3=172.8(万人次),
答:预测2019年该省公民出境旅游总人数约172.8万人次.
本题考查一元二次方程的应用,(1)解决此类问题要先找等量关系,2017年出境旅游人数+2018年出境旅游人数=264,可根据2016年的人数,运用增长率公式表示出2017年、2018年的人数,从而列出方程,由此可解;(2)可根据(1)中计算出来的增长率,运用公式直接求解(增长率计算公式:B=A(1+a)n这里A为基数,B为增长之后的数量,a为增长率,n为期数).
题号
一
二
三
四
五
总分
得分
组别
成绩x(分)
频数(人数)
第1组
60≤x<68
4
第2组
68≤x<76
8
第3组
76≤x<84
12
第4组
84≤x<92
a
第5组
92≤x<100
10
某品牌空调扇
某品牌电风扇
进价(元/台)
700
100
售价(元/台)
900
160
2024-2025学年山东省济宁兖州区七校联考九上数学开学考试试题【含答案】: 这是一份2024-2025学年山东省济宁兖州区七校联考九上数学开学考试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年山东省济宁兖州区七校联考数学九上期末学业质量监测试题含答案: 这是一份2023-2024学年山东省济宁兖州区七校联考数学九上期末学业质量监测试题含答案,共7页。试卷主要包含了二次函数y=等内容,欢迎下载使用。
山东省济宁兖州区七校联考2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案: 这是一份山东省济宁兖州区七校联考2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案,共6页。试卷主要包含了下列结论正确的是,下列算式正确的是等内容,欢迎下载使用。