山东省济宁市曲阜市2025届数学九上开学学业水平测试试题【含答案】
展开
这是一份山东省济宁市曲阜市2025届数学九上开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一元二次方程x2-9=0的解为( )
A.x1=x2=3B.x1=x2=-3C.x1=3,x2=-3D.x1=,x2=-
2、(4分)如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是( )
A.B.C.D.
3、(4分)一次函数y=3x+b和y=ax-3的图象如图所示,其交点为P(-2,-5),则不等式3x+b>ax-3的解集在数轴上表示正确的是( )
A.B.
C.D.
4、(4分)下列运算结果正确的是( )
A.=﹣3B.(﹣)2=2C.÷=2D.=±4
5、(4分)已知一次函数与的图象如图所示,则关于的不等式的解集为( )
A.B.C.D.
6、(4分)直角三角形两边分别为3和4,则这个直角三角形面积为( )
A.6B.12C.D.或6
7、(4分)下列点在直线y=-x+1上的是 ( )
A.(2,-1)B.(3,3)C.(4,1)D.(1,2)
8、(4分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是( )
A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,将直角三角形, ,,沿方向平移得直角三角形,,阴影部分面积为_____________.
10、(4分)若关于的方程的一个根是,则方程的另一个根是________.
11、(4分)如图将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR分别与AC,CD相交于点P,Q,则BP:PQ:QR=__.
12、(4分)多边形的每个外角都等于45°,则这个多边形是________边形.
13、(4分)关于x的方程ax﹣2x﹣5=0(a≠2)的解是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图:BE、CF是锐角△ABC的两条高,M、N分别是BC、EF的中点,若EF=6,BC=24.
(1)证明:∠ABE=∠ACF;
(2)判断EF与MN的位置关系,并证明你的结论;
(3)求MN的长.
15、(8分)如图,菱形的对角线、相交于点,,,连接.
(1)求证:;
(2)探究:当等于多少度时,四边形是正方形?并证明你的结论.
16、(8分)先化简,再求值:,其中的值从不等式组的整数解中选取.
17、(10分)(1)计算:.
(2)计算:.
(3)先化简,再求值:,其中满足.
(4)解方程:.
18、(10分)先因式分解,再求值:4x3y﹣9xy3,其中x=﹣1,y=1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式:
20、(4分)若实数a、b满足,则=_____.
21、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程 (千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.
22、(4分)若函数y=2x+b经过点(1,3),则b= _________.
23、(4分)已知命题:全等三角形的对应角相等.这个命题的逆命题是:__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.
(1)求证:BD、EF互相平分;
(2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积.
25、(10分)如图,在中,对角线BD平分,过点A作,交CD的延长线于点E,过点E作,交BC延长线于点F.
(1)求证:四边形ABCD是菱形;
(2)若求EF的长.
26、(12分)已知:如图,一块Rt△ABC的绿地,量得两直角边AC=8cm,BC=6cm.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8cm为直角边长的直角三角形,求扩充等腰△ABD的周长.
(1)在图1中,当AB=AD=10cm时,△ABD的周长为 .
(2)在图2中,当BA=BD=10cm时,△ABD的周长为 .
(3)在图3中,当DA=DB时,求△ABD的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先变形得到x2=9,然后利用直接开平方法解方程.
【详解】
解:x2=9,
∴x=±1,
∴x1=1,x2=-1.
故选:C.
本题考查了直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
2、B
【解析】
根据题意,在实验中有3个阶段,
①、铁块在液面以下,液面得高度不变;
②、铁块的一部分露出液面,但未完全露出时,液面高度降低;
③、铁块在液面以上,完全露出时,液面高度又维持不变;
分析可得,B符合描述;
故选B.
3、A
【解析】
直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.
【详解】
解:∵由函数图象可知,
当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,
∴不等式3x+b>ax-3的解集为:x>-2,
在数轴上表示为:
故选:A.
本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.
4、B
【解析】
根据平方根和算术平方根的知识点进行解答得到答案.
【详解】
A. ,错误;
B. (﹣)2=2,正确;
C. ,错误;
D. ,错误;
故选B.
本题主要考查二次根式的性质与化简,仔细检查是关键.
5、A
【解析】
由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.
【详解】
两条直线的交点坐标为(1,2),且当x<1时,直线y2在直线y1的上方,故不等式的解集为x<1.
故选A.
本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
6、D
【解析】
此题要考虑全面,一种是3,4为直角边;一种是4是斜边,分情况讨论即可求解.
【详解】
当3和4是直角边时,面积为;当4是斜边时,另一条直角边是,面积为,故D选项正确.
此题主要考查勾股定理和三角形面积的计算,注意要分情况讨论.
7、A
【解析】
分析:分别把点代入直线y=-x+1,看是否满足即可.
详解:当x=1时,y=-x+1=0;
当x=2时,y=-x+1=-1;
当x=3时,y=-x+1=-2;
当x=4时,y=-x+1=-3;
所以点(2,-1)在直线y=-x+1上.
故选A.
点睛:本题主要考查了一次函数上的坐标特征,关键在于理解一次函数上的坐标特征.
8、A
【解析】
【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号即可得出答案.
【详解】∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,
∴点A的坐标是:(4,1),
故选A.
【点睛】本题考查了关于x轴对称的点的坐标特征,正确把握横纵坐标的关系是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据平移的性质,对应点间的距离等于平移的距离求出CE=BF,再求出GE,然后根据平移变换只改变图形的位置不改变图形的形状与大小可得△ABC的面积等于△DEF的面积,从而得到阴影部分的面积等于梯形ACEG的面积,再利用梯形的面积公式列式计算即可得解.
【详解】
∵△ACB平移得到△DEF,
∴CE=BF=2,DE=AC=6,
∴GE=DE-DG=6-3=3,
由平移的性质,S△ABC=S△DEF,
∴阴影部分的面积=S梯形ACEG=(GE+AC)•CE=(3+6)×2=1.
故答案为:1.
本题考查了平移的性质,熟练掌握性质并求出阴影部分的面积等于梯形ACEG的面积是本题的难点,也是解题的关键.
10、-2
【解析】
根据一元二次方程根与系数的关系求解即可.
【详解】
设方程的另一个根为x1,
∵方程的一个根是,
∴x1+0=﹣2,即x1=﹣2.
故答案为:﹣2.
本题主要考查一元二次方程的根与系数的关系(韦达定理),
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=﹣,x1x2=.
11、2:1:1
【解析】
根据平移的性质得到AC∥DE,BC=CE,得到△BPC∽△BRE,根据相似三角形的性质得到PC=DR,根据△PQC∽△RQD,得到PQ=QR,即可求解.
【详解】
由平移的性质可知,AC∥DE,BC=CE,
∴△BPC∽△BRE,
∴,
∴PC=RE,BP=PR,
∵DR:RE=1:2,
∴PC=DR,
∵AC∥DE,
∴△PQC∽△RQD,
∴=1,
∴PQ=QR,
∴BP:PQ:QR=2:1:1,
故答案为2:1:1.
本题考查了相似三角形的判定和性质,平移的性质,掌握相似三角形的判定定理和性质定理是解题的关键.
12、八
【解析】
根据多边形的外角和等于360°,用360°除以多边形的每个外角的度数,即可得出这个多边形的边数.
【详解】
解:∵360°÷45°=8,
∴这个多边形是八边形.
故答案为:八.
此题主要考查了多边形的外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于360°.
13、
【解析】
利用解一元一次方程的一般步骤解出方程.
【详解】
ax﹣2x﹣5=0
(a﹣2)x=5
x=,
故答案为:.
本题考查了一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)垂直平分.(3).
【解析】
(1)依据、是锐角的两条高,可得,,进而得出;
(2)连接、,根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形三线合一的解答;
(3)求出、,然后利用勾股定理列式计算即可得解.
【详解】
解:(1)、是锐角的两条高,
,,
;
(2)垂直平分.
证明:如图,连接、,
、是锐角的两条高,是的中点,
,
是的中点,
垂直平分;
(3),,
,,
在Rt△EMN中,由勾股定理得,.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造成等腰三角形是解题的关键.
15、(1)见解析;(2)当时,四边形OCED为正方形,见解析.
【解析】
(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,由矩形的性质可得OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,根据正方形的判定方法证明即可.
【详解】
解:(1)证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴∠COD=90°,
∴四边形OCED是矩形,
∴OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,
理由如下:
∵四边形ABCD是菱形,∠ABC=90°,
∴四边形ABCD是正方形,
∴DO=CO,
又∵四边形OCED是矩形,
∴四边形OCED是正方形.
本题考查了菱形的性质,矩形的判定与性质,正方形的判定和性质,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
16、,-2
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求得x的范围,据此得出x的整数值,继而根据分式有意义的条件得出x的值,代入计算可得.
【详解】
解:,
解不等式组得,-1≤x≤,∴不等式组的整数解为-1,0,1,2,
∵x≠±1且x≠0,
∴x=2,
将x=2代入得,
原式=.
本题主要考查了分式的化简求值以及解不等式组,解题的关键是掌握基本运算法则,并注意选取代入的数值一定要使原分式有意义.
17、(1);(2);(3),;(4)
【解析】
(1)(2)根据二次根式的乘法和加减法可以解答本题;
(3)根据分式的加减法和除法可以化简题目中的式子,然后将整体代入求值即可解答本题;
(4)根据解分式方程的方法,把分式方程化为整式方程,可以解答本题,注意验根.
【详解】
解:(1)原式=
=;
(2)原式=
=;
(3)原式=
=
=
=,
∵,
∴,
∴原式=
=;
(4)去分母,得,,
去括号,得,,
移项,得,,
合并同类项,得,,
系数化为1,得,,
检验:当时,,
∴是原方程的解.
本题考查了二次根式的混合运算、分式的化简求值以及解分式方程,解答本题的关键是明确它们各自的解答方法,注意分式方程要检验.
18、2.
【解析】
先提取公因式,再根据平方差公式分解因式,最后代入求出即可.
【详解】
4x3y﹣9xy3
=xy(4x1-9y1)
=xy(1x+3y)(1x﹣3y),
当x=﹣1,y=1时,
原式=(﹣1)×1×[1×(﹣1)+3×1]×[1×(﹣1)﹣3×1]=﹣1×4×(﹣8)=2.
本题考查了求代数式的值和分解因式,能够正确分解因式是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题分析:首先提取公因式b,然后根据完全平方公式进行因式分解.原式==
考点:(1)因式分解;(2)提取公因式法;(3)完全平方公式
20、﹣
【解析】
根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.
21、20
【解析】
先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.
【详解】
解:设y与x之间的函数关系式为y=kx+b,由函数图象,得
,
解得: ,
则y=﹣0.1x+1.
当x=150时,
y=﹣0.1×150+1=20(升).
故答案为20
本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.
22、1
【解析】
由于函数y=2x+b经过点(1,3),故可将点的坐标代入函数解析式,求出b的值.
解:将点(1,3)代入y=2x+b得
3=2+b,
解得b=1.
故答案为1.
23、对应角相等的三角形全等
【解析】
根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.
【详解】
命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,
故其逆命题是对应角相等的三角形是全等三角形.
故答案是:对应角相等的三角形是全等三角形.
考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)四边形DEBF的周长为12 ,面积是4
【解析】
分析:(1)证明EF、BD互相平分,只要证DEBF是平行四边形;利用两组对边分别平行来证明.
(2)求四边形DEBF的周长,求出BE和DE即可.
详解:(1)∵四边形ABCD是平行四边形
∴CD∥AB,CD=AB,AD=BC
∵DE、BF分别是∠ADC和∠ABC的角平分线
∴∠ADE=∠CDE,∠CBF=∠ABF
∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF
∴∠AED=∠ADE,∠CFB=∠CBF
∴AE=AD,CF=CB,∴AE=CF,∴AB-AE=CD-CF 即BE=DF
∵DF∥BE,∴四边形DEBF是平行四边形
∵∠A=60°,AE=AD∴△ADE是等边三角形
∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2
∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12
过D点作DG⊥AB于点G,
在Rt△ADG中,AD=4,∠A=60°,
∴DG=ADcs∠A=4×=
∴四边形DEBF的面积=BE×DG=2×=4
点睛:此题主要考查了平行四边形的性质与判定.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
25、 (1)见解析;(2)
【解析】
(1)证明,得出,即可得出结论;
(2)由菱形的性质得出,证明四边形ABDE是平行四边形,,得出,在中,由等腰直角三角形的性质和勾股定理即可求出EF的长.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
,
∵BD平分,
,
,
,
是菱形;
(2)解:∵四边形ABCD是菱形,
,
,
∴四边形ABDE是平行四边形,,
,
,
,
是等腰直角三角形,
.
本题考查了平行四边形的性质与判定、菱形的判定与性质、等腰三角形的判定以及等腰直角三角形的判定与性质;熟练掌握菱形判定与性质是解决问题的关键.
26、(1)32m;(2)(20+4)m;(3)
【解析】
(1)利用勾股定理得出DC的长,进而求出△ABD的周长;
(2)利用勾股定理得出AD的长,进而求出△ABD的周长;
(3)首先利用勾股定理得出DC、AB的长,进而求出△ABD的周长.
【详解】
:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,
∴
则△ABD的周长为:10+10+6+6=32(m).
故答案为:32m;
(2)如图2,当BA=BD=10m时,
则DC=BD-BC=10-6=4(m),
故
则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;
故答案为:(20+4)m;
(3)如图3,∵DA=DB,
∴设DC=xm,则AD=(6+x)m,
∴DC2+AC2=AD2,
即x2+82=(6+x)2,
解得;x=
∵AC=8m,BC=6m,
∴AB=10m,
故△ABD的周长为:AD+BD+AB=2
此题主要考查了勾股定理的应用,根据题意熟练应用勾股定理是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份山东省济宁市、曲阜市2024年九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省济南市九级2024年九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,四象限D.两支图象关于原点对称,解答题等内容,欢迎下载使用。
这是一份2025届山东省邹平市数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。