山东省济宁市、曲阜市2024年九上数学开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)观察下列命题:
(1)如果a<0,b>0,那么a+b<0;
(2)如果两个三角形的3个角对应相等,那么这两个三角形全等;
(3)同角的补角相等;
(4)直角都相等.
其中真命题的个数是( ).
A.0B.1C.2D.3
2、(4分)要关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,那么m的值可以是( )
A.2B.1C.0D.﹣1
3、(4分)若分式在实数范围内有意义,则的取值范围是( )
A.B.C.D.
4、(4分)不等式 的解集为( ).
A.B.C.D.
5、(4分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 ( )
A.B.C.D.
6、(4分)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管( )根.
A.2B.4C.5D.无数
7、(4分)计算(2+)(﹣2)的结果是( )
A.1B.0C.﹣1D.﹣7
8、(4分)要使分式有意义,则x应满足的条件是( )
A.x≠1B.x≠1或x≠0C.x≠0D.x>1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,对角线与相交于点,是边的中点,连结.若,,则的度数为_______.
10、(4分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若EF=13,则线段AB的长为_____.
11、(4分)函数y=kx的图象经过点(1,3),则实数k=_____.
12、(4分)若a+b=4,a﹣b=1,则(a+2)2﹣(b﹣2)2的值为_____.
13、(4分)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有_____棵.
三、解答题(本大题共5个小题,共48分)
14、(12分)四边形ABCD是正方形,AC是对角线,E是平面内一点,且,过点C作,且.连接AE、AF,M是AF的中点,作射线DM交AE于点N.
(1)如图1,若点E,F分别在BC,CD边上.
求证:①;
②;
(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求与的和的度数.
15、(8分)平面直角坐标系中,设一次函数的图象是直线.
(1)如果把向下平移个单位后得到直线,求的值;
(2)当直线过点和点时,且,求的取值范围;
(3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.
16、(8分)如图是一个三级台阶,它的第一级的长、宽、高分别为20dm,3dm,2dm,点和点是这个台阶两个相对的端点,点处有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点的最短路程是多少?
17、(10分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性
笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,
水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
18、(10分)先化简,再求值:,其中a=+1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,分别以点为圆心,大于的长为半径画弧,两弧交于点,作直线交于点,交于点,连接.若,连接点和的中点,则的长为_______.
20、(4分)如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,点A1的坐标为(3,1),则点B1的坐标为_______.
21、(4分)学校篮球队五名队员的年龄分别为,其方差为,则三年后这五名队员年龄的方差为______.
22、(4分)菱形的边长为5,一条对角线长为8,则菱形的面积为____.
23、(4分)如图 ,D 为△ABC 的 AC 边上的一点,∠A=∠DBC=36°,∠C=72°,则图中 共有等腰三角形____个.
二、解答题(本大题共3个小题,共30分)
24、(8分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
(1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
25、(10分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年的随机抽取了部分学生的鞋号,绘制了统计图A和图B,请根据相关信息,解答下列问题:
(1)本次随机抽样的学生数是多少?A中值是多少?
(2)本次调查获取的样本数据的众数和中位数各是多少?
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?
26、(12分)某楼盘2018年2月份以每平方米10000元的均价对外销售,由于炒房客的涌入,房价快速增长,到4月份该楼盘房价涨到了每平方米12100元.5月份开始政府再次出台房地产调控政策,逐步控制了房价的连涨趋势,到6月份该楼盘的房价为每平方米12000元.
(1)求3、4两月房价平均每月增长的百分率;
(2)由于房地产调控政策的出台,购房者开始持币观望,为了加快资金周转,房地产开发商对于一次性付清购房款的客户给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,总价优惠10000元,并送五年物业管理费,物业管理费是每平方米每月1.5元,小颖家在6月份打算购买一套100平方米的该楼盘房子,她家该选择哪种方案更优惠?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据不等式的运算、相似三角形的判定定理、补角的性质、直角的性质对各命题进行判断即可.
【详解】
(1)如果a<0,b>0,那么a+b的值不确定,错误;
(2)如果两个三角形的3个角对应相等,那么这两个三角形相似,错误;
(3)同角的补角相等,正确;
(4)直角都相等,正确;
故真命题的个数是2个
故答案为:C.
本题考查了命题的问题,掌握不等式的运算、相似三角形的判定定理、补角的性质、直角的性质是解题的关键.
2、D
【解析】
根据一元二次方程的定义和判别式的意义得到m≠1且△=22-4m>1,然后求出两个不等式的公共部分即可.
【详解】
根据题意得m≠1且△=22﹣4m>1,
解得m<1且m≠1.
故选D.
本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.
3、A
【解析】
根据分式有意义的条件即可求出答案.
【详解】
由分式有意义的条件可知:x-1≠0,
∴x≠1,
故选A.
考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.
4、B
【解析】
先移项,再系数化为1即可得到不等式的解集.
【详解】
解:移项得:
合并同类项得:
系数化为1得:
故选:B
本题考查了一元一次不等式的解法,熟练掌握计算法则是关键,当两边除以负数时,要注意不等号的方向要改变.
5、A
【解析】
先根据矩形的判定得出四边形是矩形,再根据矩形的性质得出,互相平分且相等,再根据垂线段最短可以得出当时,的值最小,即的值最小,根据面积关系建立等式求解即可.
【详解】
解:∵,,,
∴,
∵,,
∴四边形是矩形,
∴,互相平分,且,
又∵为与的交点,
∴当的值时,的值就最小,
而当时,有最小值,即此时有最小值,
∵,
∴,
∵,,,
∴,
∴,
∴.
故选:.
本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,找出取最小值时图形的特点是解题关键.
6、C
【解析】
分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.
详解:如图所示,∠AOB=15°,
∵OE=FE,
∴∠GEF=∠EGF=15°×2=30°,
∵EF=GF,所以∠EGF=30°
∴∠GFH=15°+30°=45°
∵GH=GF
∴∠GHF=45°,∠HGQ=45°+15°=60°
∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,
∵QH=QB
∴∠QBH=75°,∠HQB=180-75°-75°=30°,
故∠OQB=60°+30°=90°,不能再添加了.
故选C.
点睛:根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答.
7、C
【解析】
分析:
根据二次根式的乘法法则结合平方差公式进行计算即可.
详解:
原式=.
故选C.
点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.
8、A
【解析】
根据分式有意义的条件:分母≠0,即可得出结论.
【详解】
解:由分式有意义,得
x-1≠0,
解得x≠1.
故选:A.
此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、40°
【解析】
直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【详解】
解:,,
,
对角线与相交于点,是边的中点,
是的中位线,
,
.
故答案为:.
此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出是的中位线是解题关键.
10、1
【解析】
根据三角形中位线定理得到,,根据平行四边形的性质求出,根据直角三角形的性质计算即可.
【详解】
解:点,分别是边,的中点,
,,
,
,又,
四边形为平行四边形,
,
,点是边的中点,
,
故答案为:1.
本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
11、3
【解析】
试题分析:直接把点(1,3)代入y=kx,然后求出k即可.
解:把点(1,3)代入y=kx,
解得:k=3,
故答案为3
【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.
12、1
【解析】
先利用平方差公式:化简所求式子,再将已知式子的值代入求解即可.
【详解】
将代入得:原式
故答案为:1.
本题考查了利用平方差公式进行化简求值,熟记公式是解题关键.另一个重要公式是完全平方公式:,这是常考知识点,需重点掌握.
13、121
【解析】
设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.
【详解】
设市团委组织部分中学的团员有x人,则树苗有(4x+37)棵,由题意得1(4x+37)-6(x-1)<3,去括号得:1-2x+43<3,移项得:-42-2x<-40,解得:20
三、解答题(本大题共5个小题,共48分)
14、(1)①见解析;②见解析;(2)
【解析】
(1)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,可知①∠BAE=∠DAF是否成立;可知②DN⊥AE是否成立;
(2)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,求出∠EAC与∠ADN的和的度数.
【详解】
(1)证明:①在正方形ABCD中,
∴,.
∵,
∴.
∴.
∴.
②∵M是AF的中点,
∴,
由①可知.
∵.
∵
∴
∴
(2)解:延长AD至H,使得,连结FH,CH.
∵,
∴.
在正方形ABCD屮,AC是对角线,
∴.
∴.
∴.
∴
又∵,
∴.
∴
∵M是AF的中点,D是AH的中点,
∴.
∴
∴
本题主要考查了正方形的性质,全等三角形的判定,全等三角形的性质的应用,解题的关键是熟练掌握正方形的性质,全等三角形的判定,全等三角形的性质的计算.
15、(1);(2)且;(3)
【解析】
(1)根据一次函数平移的规律列方程组求解;
(2)将两点的坐标代入解析式得出方程组,根据方程组可得出a,b的等量关系式,然后根据b的取值范围,可求出a的取值范围,另外注意一次函数中二次项系数2a-3≠0的限制条件;
(3)先根据点P的坐标求出动点P所表示的直线表达式,再根据直线与平行得出结果.
【详解】
解:(1)依题意得
,
.
(2)过点和点
,
两式相减得;
解法一:,
当时,;
当时,.
,随的增大而增大
且,
.
,.
且.
解法二:
,
,解得.
,
∴.
且.
(3)设,
.
消去得,
动点的图象是直线.
不在上,
与平行,
,.
本题考查一次函数的图像与性质,以及一次函数平移的规律,掌握基本的性质是解题的关键.
16、最短路程是25dm.
【解析】
先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.
【详解】
三级台阶平面展开图为长方形,长为20dm,宽为,
则蚂蚁沿台阶面爬行到点最短路程是此长方形的对角线长.
可设蚂蚁台阶面爬行到点最短路程为.
由勾股定理,得,
解得.
因此,蚂蚁沿着台阶面爬到点的最短路程是25dm.
此题考查平面展开-最短路径问题,解题关键在于利用勾股定理进行计算.
17、(1)见解析;(2)见解析;(3)见解析
【解析】
解:
(1)设按优惠方法①购买需用y1元,按优惠方法②购买需用y2元
y1=(x−4)×5+20×4=5x+60,
y2=(5x+20×4)×0.9=4.5x+72.
(2)分为三种情况:①∵设y1=y2,
5x+60=4.5x+72,
解得:x=24,
∴当x=24时,选择优惠方法①,②均可;
②∵设y1>y2,即5x+60>4.5x+72,
∴x>24.当x>24整数时,选择优惠方法②;
③当设y1
∴当4⩽x<24时,选择优惠方法①.
(3) 因为需要购买4个书包和12支水性笔,而12<24,
购买方案一:用优惠方法①购买,需5x+60=5×12+60=1元;
购买方案二:采用两种购买方式,用优惠方法①购买4个书包,
需要4×20=80元,同时获赠4支水性笔;
用优惠方法②购买8支水性笔,需要元.
共需80+36=116元.显然116<1.
最佳购买方案是:
用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.
18、
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.
【详解】
原式=
=,
当a=+1时,原式=.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
由作图可知,MN为AB的垂直平分线,根据线段垂直平分线的性质得到AF=BF=6,且AE=BE,由线段中点的定义得到EG为△ABC的中位线,从而可得出结果.
【详解】
解:∵由作图可知,MN为AB的垂直平分线,
∴AE=BE,=6,
∴.
而是的中位线,
∴.
故答案为:1.
本题考查了基本作图-作已知线段的垂直平分线:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.同时也考查了线段垂直平分线的性质以及三角形的中位线的性质.
20、(1,2)
【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移1个单位,向上平移1个单位,进而可得a、b的值.
【详解】
解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,1),
∴线段AB向右平移1个单位,向上平移1个单位,
∴a=0+1=1,b=1+1=2,
点B1的坐标为(1,2),
故答案为(1,2),
本题考查坐标与图形的变化--平移,解题关键是掌握点的坐标的变化规律.
21、0.1.
【解析】
解:方差是用来衡量一组数据波动大小的量,每个数都加了3所以波动不会变,方差仍为0.1.
故答案为:0.1.
22、1
【解析】
菱形的对角线互相垂直平分,四边相等,可求出另一条对角线的长,再根据菱形的面积等于对角线乘积的一半求解即可.
【详解】
∵菱形的边长为5,一条对角线长为8
∴另一条对角线的长
∴菱形的面积
故答案为:1.
本题考查了菱形的面积问题,掌握菱形的性质、菱形的面积公式是解题的关键.
23、1
【解析】
由∠C=72゜,∠A=∠DBC=16゜,根据三角形内角和定理与三角形外角的性质,可求得∠ABD=∠A=16°,∠ABC=∠BCD=∠BDC=72°,继而求得答案.
【详解】
解:∵∠C=72゜,∠A=∠DBC=16゜,
∴∠BDC=180°-∠DBC-∠C=72°=∠C,
∴BC=BD,即△BCD是等腰三角形;
∴∠ABD=∠BDC-∠A=16°=∠A,
∴AD=BD,即△ABD是等腰三角形;
∴∠ABC=∠ABD+∠DBC=72°=∠C,
∴AB=AC,即△ABC是等腰三角形.
故答案为:1.
此题考查了等腰三角形的判定、三角形的外角的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.
二、解答题(本大题共3个小题,共30分)
24、(1)50; 1;(2)2;3;15;(3)608人.
【解析】
(1)根据条形统计图即可得出样本容量:4+2+12+3+8=50(人);根据扇形统计图得出m的值:;
(2)利用平均数、中位数、众数的定义分别求出即可.
(3)根据样本中捐款3元的百分比,从而得出该校本次活动捐款金额为3元的学生人数.
【详解】
解:(1)根据条形图4+2+12+3+8=50(人),
m=30-20-24-2-8=1;
故答案为:50; 1.
(2)∵,
∴这组数据的平均数为:2.
∵在这组样本数据中,3出现次数最多为2次,
∴这组数据的众数为:3.
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,
∴这组数据的中位数为:,
(3)∵在50名学生中,捐款金额为3元的学生人数比例为1%,
∴由样本数据,估计该校1900名学生中捐款金额为3元的学生人数有1900×1%=608人.
∴该校本次活动捐款金额为3元的学生约有608人.
此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
25、(1)40;15(2)众数为35,中位数为36;(3)60双
【解析】
(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;
(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;
(3)根据题意列出算式,计算即可得到结果.
【详解】
(1)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图A中m的值为100−30−25−20−10=15;
故本次随机抽样的学生数是40名,A中值是15;
(2)∵在这组样本数据中,35出现了12次,出现次数最多,
∴这组样本数据的众数为35;
∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,
∴中位数为=36;
答:本次调查获取的样本数据的众数为35,中位数为36;
(3)∵在40名学生中,鞋号为35的学生人数比例为30%,
∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,
则计划购买200双运动鞋,有200×30%=60双为35号.
答:建议购买35号运动鞋60双.
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
26、(1)3、4两月房价平均每月增长的百分率为10%;(2)选择第一种方案更优惠.
【解析】
(1)设3、4两月房价平均每月增长的百分率为x,根据2月份及4月份该楼盘房价,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据两种优惠方案,分别求出选择两种方案优惠总额,比较后即可得出结论.
【详解】
解:(1)设3、4两月房价平均每月增长的百分率为x,
根据题意得:10000(1+x)2=12100,
解得:x1=0.1=10%,x2=﹣2.1(舍去).
答:3、4两月房价平均每月增长的百分率为10%.
(2)选择第一种优惠总额=100×12000×(1﹣0.98)=24000(元),
选择第二种优惠总额=100×1.5×12×5+10000=19000(元).
∵24000>19000,
∴选择第一种方案更优惠.
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)分别求出选择两种方案优惠总额.
题号
一
二
三
四
五
总分
得分
批阅人
2025届山东省邹平县实验中学九上数学开学统考模拟试题【含答案】: 这是一份2025届山东省邹平县实验中学九上数学开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省济宁市名校九上数学开学达标检测模拟试题【含答案】: 这是一份2025届山东省济宁市名校九上数学开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省德州市齐河县九上数学开学统考模拟试题【含答案】: 这是一份2025届山东省德州市齐河县九上数学开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。