


2025届山东省邹平市数学九上开学学业水平测试模拟试题【含答案】
展开
这是一份2025届山东省邹平市数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,AB=8,BC=12,AC=10,点D、E分别是BC、CA的中点,则△DEC的周长为( )
A.15B.18C.20D.22
2、(4分)在菱形中,对角线相交于点,,则的长为( )
A.B.C.D.
3、(4分)如图,在菱形中,,.是边上的一点,,分别是,的中点,则线段的长为( )
A.B.C.D.
4、(4分)下列命题的逆命题成立的是( )
A.对顶角相等B.两直线平行,同位角相等
C.如果a=b,那么a2 =b2D.正方形的四条边相等
5、(4分)下列各组数据为边的三角形中,是直角三角形的是( )
A.8,15,16B.5,12,15C.1,2,D.2,,
6、(4分)使用同一种规格的下列地砖,不能进行平面镶嵌的是( )
A.正三角形地砖 B.正四边形地砖 C.正五边形地砖 D.正六边形地砖
7、(4分)等式成立的条件是( )
A.B.C.x>2D.
8、(4分)下列说法是8的立方根;是64的立方根;是的立方根;的立方根是,其中正确的说法有个.
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.
10、(4分)方程x2=2x的解是__________.
11、(4分)数据1,-3,1,0,1的平均数是____,中位数是____,众数是____,方差是___.
12、(4分)已知菱形两条对角线的长分别为4和6,则菱形的边长为______.
13、(4分)观察下列式子:
当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=_____,b=_____,c=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.
(1)分别求出这两个函数的解析式;
(2)求的面积;
(3)点在轴上,且是等腰三角形,请直接写出点的坐标.
15、(8分)市政某小组检修一条长的自来水管道,在检修了一半的长度后,提高了工作效率,每小时检修的管道长度是原计划的1.5倍,结果共用完成任务,求这个小组原计划每小时检修管道的长度.
16、(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,﹣3),C(3,n),交y轴于点B,交x轴于点D.
(1)求反比例函数y=和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积.
17、(10分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:
①菜地离小明家多远?小明走到菜地用了多少时间?
②小明给菜地浇水用了多少时间?
③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?
18、(10分)如图,在平行四边形 中,、 的平分线 分别与线段 交于点 , 与 交于点 .
(1) 求证:,;
(2) 若 ,,,求 和 的长度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,平行四边形OABC的顶点O、A、C的坐标分别是(0,0)、(6,0)、(2,4),则点B的坐标为_____.
20、(4分)如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为________.
21、(4分)把我们平时使用的一副三角板,如图叠放在一起,则∠的度数是___度.
22、(4分)一组数据﹣1,0,1,2,3的方差是_____.
23、(4分)端午期间,王老师一家自驾游去了离家170km的某地,如图是他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象,当他们离目的地还有20km时,汽车一共行驶的时间是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)分解因式:3a2b﹣12ab+12b.
25、(10分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
(l)当点C与点O重合时,DE= ;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
26、(12分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(6,4),E为AB的中点,过点D(8,0)和点E的直线分别与BC、y轴交于点F、G.
(1)求直线DE的函数关系式;
(2)函数y=mx﹣2的图象经过点F且与x轴交于点H,求出点F的坐标和m值;
(3)在(2)的条件下,求出四边形OHFG的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据三角形中位线定理求出DE,根据三角形的周长公式计算,得到答案.
【详解】
解:∵点D、E分别是BC、CA的中点,
∴DE=AB=4,CE=AC=5,DC=BC=6,
∴△DEC的周长=DE+EC+CD=15,
故选:A.
考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.
2、D
【解析】
由菱形的对角线的性质可知OA=4,根据勾股定理即可求出OD的长.
【详解】
解:如图,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=4,
∵AD=5,
∴OD==3.
故选D.
本题考查了菱形的性质和勾股定理.
3、C
【解析】
如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.
【详解】
如图连接BD.
∵四边形ABCD是菱形,
∴AD=AB=8,
∵
∴△ABD是等边三角形,
∴BA=AD=8,
∵PE=ED,PF=FB,
∴
故选:C.
考查菱形的性质以及三角形的中位线定理,三角形的中位线平行于第三边并且等于第三边的一半.
4、B
【解析】
分别写出四个命题的逆命题,然后判断真假即可.
【详解】
A,逆命题是相等的角是对顶角,错误;
B,逆命题是同位角相等,两直线平行,正确;
C,逆命题是如果,则,错误;
D,逆命题是四条边相等的四边形是正方形,错误;
故选:B.
本题主要考查逆命题的真假,能够写出逆命题是解题的关键.
5、D
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、82+152≠162,故不是直角三角形,故选项错误;
B、52+122≠152,故不是直角三角形,故选项错误;
C、12+22≠()2,故不是直角三角形,故选项错误;
D、22+()2=()2,故是直角三角形,故选项正确;故选:D.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
6、C
【解析】试题解析:A、正三角形的每个内角是60°,能整除360°,能密铺,故A不符合题意;
B、正四边形每个内角是90°,能整除360°,能密铺,故B不符合题意;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,故C符合题意;
D、正六边形每个内角是120°,能整除360°,能密铺,故D不符合题意.
故选C.
7、C
【解析】
直接利用二次根式的性质得出关于x的不等式进而求出答案.
【详解】
解:∵等式=成立,
∴,
解得:x>1.
故选:C.
此题主要考查了二次根式的性质,正确解不等式组是解题关键.
8、C
【解析】
根据立方根的概念即可求出答案.
【详解】
①2是8的立方根,故①正确;
②4是64的立方根,故②错误;
③是的立方根,故③正确;
④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确.
故选C.
本题考查了立方根的概念,解题的关键是正确理解立方根的概念,本题属于基础题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题解析:设BE与AC交于点P,连接BD,
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小.
即P在AC与BE的交点上时,PD+PE最小,为BE的长度;
∵正方形ABCD的边长为1,
∴AB=1.
又∵△ABE是等边三角形,
∴BE=AB=1.
故所求最小值为1.
考点:轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.
10、x1=0, x2=2
【解析】
利用因式分解法解方程即可得到答案.
【详解】
解:原方程化为:
所以:
所以: 或
解得:
故答案为:
本题考查的是一元二次方程的解法,熟练掌握一元二次方程的解法是关键.
11、0、 1、 1、 2.4.
【解析】
根据平均数、中位数、众数、方差的定义求解即可.
【详解】
平均数是:(1-3+1+0+1) ÷5=0;
中位数是:1;
众数是:1;
方差是:=2.4.
故答案为: 0; 1;1; 2.4
此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
12、
【解析】
根据菱形的性质及勾股定理即可求得菱形的边长.
【详解】
解:因为菱形的对角线互相垂直平分,
所以对角线的一半为2和3,
根据勾股定理可得菱形的边长为
故答案为:.
此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.
13、2n,n2﹣1,n2+1.
【解析】
由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.
【详解】
解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
∴勾股数a=2n,b=n2﹣1,c=n2+1.
故答案为2n,n2﹣1,n2+1.
考点:勾股数.
三、解答题(本大题共5个小题,共48分)
14、(1);;(2)10;(3)或或或
【解析】
(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.
(2)如图1中,过A作AD⊥y轴于D,求出AD即可解决问题.
(3)分三种情形讨论即可①OA=OP,②AO=AP,③PA=PO.
【详解】
解:(1)正比例函数的图象经过点,
,
,
正比例函数解析式为
如图1中,过作轴于,
在中,,
解得
一次函数解析式为
(2)如图1中,过作轴于,
(3))如图2中,当OP=OA时,P(−5,0),P (5,0),
当AO=AP时,P (8,0),
当PA=PO时,线段OA的垂直平分线为y=− ,
∴P,
∴满足条件的点P的坐标或或或
此题考查一次函数综合题,解题关键在于作辅助线.
15、这个小组原计划每小时检修管道长度为1 m.
【解析】
首先设这个小组原计划每小时检修管道长度为x m,然后根据题意可列出方程,解得即可.
【详解】
解:设这个小组原计划每小时检修管道长度为x m.
由题意,得,
解得x=1.
经检验:x=1是原方程的解,且符合题意.
答:这个小组原计划每小时检修管道长度为1 m.
此题主要考查分式方程的实际应用,关键是找出关系式,即可解题.
16、(1)y=,y=x﹣2;(2)1.
【解析】
(1)先把A点坐标代入y=中求出m得到反比例函数的解析式是y=,再确定C的坐标,然后利用待定系数法求一次函数解析式;
(2)先确定D(2,0),然后根据三角形面积公式,利用S△AOC=S△OCD+S△AOD进行计算.
【详解】
解:(1)把A(﹣1,﹣3)代入y=得m=﹣1×(﹣3)=3,
则反比例函数的解析式是y=,
当x=3代入y==1,则C的坐标是(3,1);
把A(﹣1,﹣3),C(3,1)代入y=kx+b得,解得,
所以一次函数的解析式是:y=x﹣2;
(2)x=0,x﹣2=0,解得x=2,则D(2,0),
所以S△AOC=S△OCD+S△AOD=×2×(1+3)=1.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
17、①菜地离小明家1.1千米,小明走到菜地用了15分钟;②小明给菜地浇水用了10分钟;③玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是0.08千米/分钟.
【解析】
①根据函数图象可以直接写出菜地离小明家多远,小明走到菜地用了多少时间;
②根据函数图象中的数据可以得到小明给菜地浇水用了多少时间;
③根据函数图象中的数据可以得到玉米地离菜地、小明家多远,小明从玉米地走回家平均速度是多少.
【详解】
①由图象可得,
菜地离小明家1.1千米,小明走到菜地用了15分钟;
②25-15=10(分钟),
即小明给菜地浇水用了10分钟;
③2-1.1=0.9(千米)
玉米地离菜地、小明家的距离分别为0.9千米,2千米,
小明从玉米地走回家平均速度是2÷(80-55)=0.08千米/分钟.
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
18、 (1)证明见解析;(2) 的长度为 2,的长度为 .
【解析】
(1)由在平行四边形 中,、 的平分线 分别与线段交于点 ,易求得 ,即可得,证得 ,易证得与 是等腰三角形,即可得 ,,又由 ,即可证得;
(2)由(1)易求得 ,,即可求得 的长;过点 作 交 的延长线于点 ,易证得四边形 为平行四边形,即可得是直角三角形,然后利用勾股定理,即可求得 的长.
【详解】
(1) 证明:∵ 平分,
∴.
∵平分,
∴.
∵ 四边形 平行四边形,
∴,,,
∴,
∴.
∴.
∴;
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∵.
∴;
(2) 解:∵,
∴.
∴,
∵四边形 平行四边形,
∴.
∴,
∴,
过点 作 交 的延长线于点 .
∴.
∵,
∴四边形 为平行四边形.
∴,.
∴,
∴在 中:.
∴ 的长度为 2,的长度为 .
故答案为:(1)证明见解析;(2) 的长度为 2,的长度为 .
本题考查平行四边形的判定与性质、等腰三角形的判定与性质、垂直的定义以及 勾股定理等知识.此题综合性较强,难度较大,注意掌握数形结合思想的应用,注意掌握辅助线的作法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(8,4)
【解析】
首先证明OA=BC=6,根据点C坐标即可推出点B坐标;
【详解】
解:∵A(6,0),
∴OA=6,
∵四边形OABC是平行四边形,
∴OA=BC=6,
∵C(2,4),
∴B(8,4),
故答案为(8,4).
本题考查平行四边形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握基本知识属于中考常考题型.
20、y=2x-3.
【解析】
根据题意可得点B的坐标为(0,-1),AE=2,根据EF平分矩形ABCD的面积,先求出点F的坐标,再利用待定系数法求函数解析式即可.
【详解】
∵AB=2,点A的坐标为(0,1),
∴OB=1,∴点B坐标为(0,-1),
∵点E(2,1),
∴AE=2,ED=AD-AE=1,
∵EF平分矩形ABCD的面积,
∴BF=DE,
∴点F的坐标为(1,-1),
设直线EF的解析式为y=kx+b,将点E和点F的坐标代入可得,
∴
解得k=2,b=-3
∴EF的解析式为y=2x-3.
故答案为:y=2x-3.
本题考查了矩形的性质和待定系数法求一次函数解析式,正确求得点F的坐标为(1,-1)是解决问题的关键.
21、105
【解析】
根据三角板上的特殊角度,外角与内角的关系解答.
【详解】
根据三角板角度的特殊性可知∠AEB=45°,∠B=60°,
∵∠α是△BDE的外角,
∴∠α=∠AEB+∠B=45°+60°=105°
故答案为:105.
此题考查三角形的外角性质,解题关键在于掌握其性质定义和三角板的特殊角.
22、1
【解析】
这组数据的平均数为:(-1+1+0+1+3)÷5=1,所以方差=[(-1-1)1+(0-1)1+(1-1)1+(1-1)1+(3-1)1]=1.
23、2.25h
【解析】
根据待定系数法,可得一次函数解析式,根据函数值,可得相应自变量的值
【详解】
设AB段的函数解析式是y=kx+b,
y=kx+b的图象过A(1.5,90),B(2.5,170)
解得
∴AB段函数的解析式是y=80x-30
离目的地还有20千米时,即y=170-20=150km,
当y=150时,80x-30=150
解得:x=2.25h,
故答案为:2.25h
此题考查函数的图象,看懂图中数据是解题关键
二、解答题(本大题共3个小题,共30分)
24、3b(a﹣1)1.
【解析】
首先提取公因式3b,再利用完全平方公式分解因式得出答案.
【详解】
原式=3b(a1﹣4a+4)
=3b(a﹣1)1.
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
25、(1)1;(1)证明见解析;(3)≤OD≤1.
【解析】
(1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;
(1)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
(3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.
【详解】
解:∵直线AB的解析式为y=﹣1x+4,
∴点A的坐标为(1,0),点B的坐标为(0,4),即可得OB=4,OA=1,
(1)当点C与点O重合时如图所示,
∵DE垂直平分BC(BO),
∴DE是△BOA的中位线,
∴DE=OA=1;
故答案为:1;
(1)当CE∥OB时,如图所示:
∵DE为BC的中垂线,
∴BD=CD,EB=EC,
∴∠DBC=∠DCB,∠EBC=∠ECB,
∴∠DCE=∠DBE,
∵CE∥OB,
∴∠CEA=∠DBE,
∴∠CEA=∠DCE,
∴BE∥DC,
∴四边形BDCE为平行四边形,
又∵BD=CD,
∴四边形BDCE为菱形.
(3)当点C与点O重合时,OD取得最大值,此时OD=OB=1;
当点C与点A重合时,OD取得最小值,如图所示:
在Rt△AOB中,AB==1,
∵DE垂直平分BC(BA),
∴BE=BA=,
易证△BDE∽△BAO,
∴,即,
解得:BD=,
则OD=OB﹣BD=4﹣=.
综上可得:≤OD≤1.
本题考查一次函数综合题.
26、(1)直线DE的函数关系式为:y=﹣x+8;(2)点F的坐标为;(4,4);m=;(3)18.
【解析】
试题分析:(1)由顶点B的坐标为(6,4),E为AB的中点,可求得点E的坐标,又由过点D(8,0),利用待定系数法即可求得直线DE的函数关系式;
(2)由(1)可求得点F的坐标,又由函数y=mx﹣2的图象经过点F,利用待定系数法即可求得m值;
(3)首先可求得点H与G的坐标,即可求得CG,OC,CF,OH的长,然后由S四边形OHFG=S梯形OHFC+S△CFG,求得答案.
解:(1)设直线DE的解析式为:y=kx+b,
∵顶点B的坐标为(6,4),E为AB的中点,
∴点E的坐标为:(6,2),
∵D(8,0),
∴,
解得:,
∴直线DE的函数关系式为:y=﹣x+8;
(2)∵点F的纵坐标为4,且点F在直线DE上,
∴﹣x+8=4,
解得:x=4,
∴点F的坐标为;(4,4);
∵函数y=mx﹣2的图象经过点F,
∴4m﹣2=4,
解得:m=;
(3)由(2)得:直线FH的解析式为:y=x﹣2,
∵x﹣2=0,
解得:x=,
∴点H(,0),
∵G是直线DE与y轴的交点,
∴点G(0,8),
∴OH=,CF=4,OC=4,CG=OG﹣OC=4,
∴S四边形OHFG=S梯形OHFC+S△CFG=×(+4)×4+×4×4=18.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2025届山东省邹平唐村中学九上数学开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2025届山东省日照专用九上数学开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省九上数学开学学业水平测试模拟试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
