开学活动
搜索
    上传资料 赚现金

    2025届山东省邹平市数学九上开学学业水平测试模拟试题【含答案】

    2025届山东省邹平市数学九上开学学业水平测试模拟试题【含答案】第1页
    2025届山东省邹平市数学九上开学学业水平测试模拟试题【含答案】第2页
    2025届山东省邹平市数学九上开学学业水平测试模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届山东省邹平市数学九上开学学业水平测试模拟试题【含答案】

    展开

    这是一份2025届山东省邹平市数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在△ABC中,AB=8,BC=12,AC=10,点D、E分别是BC、CA的中点,则△DEC的周长为( )
    A.15B.18C.20D.22
    2、(4分)在菱形中,对角线相交于点,,则的长为( )
    A.B.C.D.
    3、(4分)如图,在菱形中,,.是边上的一点,,分别是,的中点,则线段的长为( )
    A.B.C.D.
    4、(4分)下列命题的逆命题成立的是( )
    A.对顶角相等B.两直线平行,同位角相等
    C.如果a=b,那么a2 =b2D.正方形的四条边相等
    5、(4分)下列各组数据为边的三角形中,是直角三角形的是( )
    A.8,15,16B.5,12,15C.1,2,D.2,,
    6、(4分)使用同一种规格的下列地砖,不能进行平面镶嵌的是( )
    A.正三角形地砖 B.正四边形地砖 C.正五边形地砖 D.正六边形地砖
    7、(4分)等式成立的条件是( )
    A.B.C.x>2D.
    8、(4分)下列说法是8的立方根;是64的立方根;是的立方根;的立方根是,其中正确的说法有个.
    A.1B.2C.3D.4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.
    10、(4分)方程x2=2x的解是__________.
    11、(4分)数据1,-3,1,0,1的平均数是____,中位数是____,众数是____,方差是___.
    12、(4分)已知菱形两条对角线的长分别为4和6,则菱形的边长为______.
    13、(4分)观察下列式子:
    当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
    n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
    n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
    根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=_____,b=_____,c=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.
    (1)分别求出这两个函数的解析式;
    (2)求的面积;
    (3)点在轴上,且是等腰三角形,请直接写出点的坐标.
    15、(8分)市政某小组检修一条长的自来水管道,在检修了一半的长度后,提高了工作效率,每小时检修的管道长度是原计划的1.5倍,结果共用完成任务,求这个小组原计划每小时检修管道的长度.
    16、(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,﹣3),C(3,n),交y轴于点B,交x轴于点D.
    (1)求反比例函数y=和一次函数y=kx+b的表达式;
    (2)连接OA,OC.求△AOC的面积.
    17、(10分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:
    ①菜地离小明家多远?小明走到菜地用了多少时间?
    ②小明给菜地浇水用了多少时间?
    ③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?
    18、(10分)如图,在平行四边形 中,、 的平分线 分别与线段 交于点 , 与 交于点 .
    (1) 求证:,;
    (2) 若 ,,,求 和 的长度.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,平行四边形OABC的顶点O、A、C的坐标分别是(0,0)、(6,0)、(2,4),则点B的坐标为_____.
    20、(4分)如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为________.
    21、(4分)把我们平时使用的一副三角板,如图叠放在一起,则∠的度数是___度.
    22、(4分)一组数据﹣1,0,1,2,3的方差是_____.
    23、(4分)端午期间,王老师一家自驾游去了离家170km的某地,如图是他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象,当他们离目的地还有20km时,汽车一共行驶的时间是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)分解因式:3a2b﹣12ab+12b.
    25、(10分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
    (l)当点C与点O重合时,DE= ;
    (2)当CE∥OB时,证明此时四边形BDCE为菱形;
    (3)在点C的运动过程中,直接写出OD的取值范围.
    26、(12分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(6,4),E为AB的中点,过点D(8,0)和点E的直线分别与BC、y轴交于点F、G.
    (1)求直线DE的函数关系式;
    (2)函数y=mx﹣2的图象经过点F且与x轴交于点H,求出点F的坐标和m值;
    (3)在(2)的条件下,求出四边形OHFG的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据三角形中位线定理求出DE,根据三角形的周长公式计算,得到答案.
    【详解】
    解:∵点D、E分别是BC、CA的中点,
    ∴DE=AB=4,CE=AC=5,DC=BC=6,
    ∴△DEC的周长=DE+EC+CD=15,
    故选:A.
    考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.
    2、D
    【解析】
    由菱形的对角线的性质可知OA=4,根据勾股定理即可求出OD的长.
    【详解】
    解:如图,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,OA=AC=4,
    ∵AD=5,
    ∴OD==3.
    故选D.
    本题考查了菱形的性质和勾股定理.
    3、C
    【解析】
    如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.
    【详解】
    如图连接BD.
    ∵四边形ABCD是菱形,
    ∴AD=AB=8,

    ∴△ABD是等边三角形,
    ∴BA=AD=8,
    ∵PE=ED,PF=FB,

    故选:C.
    考查菱形的性质以及三角形的中位线定理,三角形的中位线平行于第三边并且等于第三边的一半.
    4、B
    【解析】
    分别写出四个命题的逆命题,然后判断真假即可.
    【详解】
    A,逆命题是相等的角是对顶角,错误;
    B,逆命题是同位角相等,两直线平行,正确;
    C,逆命题是如果,则,错误;
    D,逆命题是四条边相等的四边形是正方形,错误;
    故选:B.
    本题主要考查逆命题的真假,能够写出逆命题是解题的关键.
    5、D
    【解析】
    由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:A、82+152≠162,故不是直角三角形,故选项错误;
    B、52+122≠152,故不是直角三角形,故选项错误;
    C、12+22≠()2,故不是直角三角形,故选项错误;
    D、22+()2=()2,故是直角三角形,故选项正确;故选:D.
    本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    6、C
    【解析】试题解析:A、正三角形的每个内角是60°,能整除360°,能密铺,故A不符合题意;
    B、正四边形每个内角是90°,能整除360°,能密铺,故B不符合题意;
    C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,故C符合题意;
    D、正六边形每个内角是120°,能整除360°,能密铺,故D不符合题意.
    故选C.
    7、C
    【解析】
    直接利用二次根式的性质得出关于x的不等式进而求出答案.
    【详解】
    解:∵等式=成立,
    ∴,
    解得:x>1.
    故选:C.
    此题主要考查了二次根式的性质,正确解不等式组是解题关键.
    8、C
    【解析】
    根据立方根的概念即可求出答案.
    【详解】
    ①2是8的立方根,故①正确;
    ②4是64的立方根,故②错误;
    ③是的立方根,故③正确;
    ④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确.
    故选C.
    本题考查了立方根的概念,解题的关键是正确理解立方根的概念,本题属于基础题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    试题解析:设BE与AC交于点P,连接BD,
    ∵点B与D关于AC对称,
    ∴PD=PB,
    ∴PD+PE=PB+PE=BE最小.
    即P在AC与BE的交点上时,PD+PE最小,为BE的长度;
    ∵正方形ABCD的边长为1,
    ∴AB=1.
    又∵△ABE是等边三角形,
    ∴BE=AB=1.
    故所求最小值为1.
    考点:轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.
    10、x1=0, x2=2
    【解析】
    利用因式分解法解方程即可得到答案.
    【详解】
    解:原方程化为:
    所以:
    所以: 或
    解得:
    故答案为:
    本题考查的是一元二次方程的解法,熟练掌握一元二次方程的解法是关键.
    11、0、 1、 1、 2.4.
    【解析】
    根据平均数、中位数、众数、方差的定义求解即可.
    【详解】
    平均数是:(1-3+1+0+1) ÷5=0;
    中位数是:1;
    众数是:1;
    方差是:=2.4.
    故答案为: 0; 1;1; 2.4
    此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    12、
    【解析】
    根据菱形的性质及勾股定理即可求得菱形的边长.
    【详解】
    解:因为菱形的对角线互相垂直平分,
    所以对角线的一半为2和3,
    根据勾股定理可得菱形的边长为
    故答案为:.
    此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.
    13、2n,n2﹣1,n2+1.
    【解析】
    由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.
    【详解】
    解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
    n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
    n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
    ∴勾股数a=2n,b=n2﹣1,c=n2+1.
    故答案为2n,n2﹣1,n2+1.
    考点:勾股数.
    三、解答题(本大题共5个小题,共48分)
    14、(1);;(2)10;(3)或或或
    【解析】
    (1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.
    (2)如图1中,过A作AD⊥y轴于D,求出AD即可解决问题.
    (3)分三种情形讨论即可①OA=OP,②AO=AP,③PA=PO.
    【详解】
    解:(1)正比例函数的图象经过点,


    正比例函数解析式为
    如图1中,过作轴于,
    在中,,
    解得
    一次函数解析式为
    (2)如图1中,过作轴于,
    (3))如图2中,当OP=OA时,P(−5,0),P (5,0),
    当AO=AP时,P (8,0),
    当PA=PO时,线段OA的垂直平分线为y=− ,
    ∴P,
    ∴满足条件的点P的坐标或或或
    此题考查一次函数综合题,解题关键在于作辅助线.
    15、这个小组原计划每小时检修管道长度为1 m.
    【解析】
    首先设这个小组原计划每小时检修管道长度为x m,然后根据题意可列出方程,解得即可.
    【详解】
    解:设这个小组原计划每小时检修管道长度为x m.
    由题意,得,
    解得x=1.
    经检验:x=1是原方程的解,且符合题意.
    答:这个小组原计划每小时检修管道长度为1 m.
    此题主要考查分式方程的实际应用,关键是找出关系式,即可解题.
    16、(1)y=,y=x﹣2;(2)1.
    【解析】
    (1)先把A点坐标代入y=中求出m得到反比例函数的解析式是y=,再确定C的坐标,然后利用待定系数法求一次函数解析式;
    (2)先确定D(2,0),然后根据三角形面积公式,利用S△AOC=S△OCD+S△AOD进行计算.
    【详解】
    解:(1)把A(﹣1,﹣3)代入y=得m=﹣1×(﹣3)=3,
    则反比例函数的解析式是y=,
    当x=3代入y==1,则C的坐标是(3,1);
    把A(﹣1,﹣3),C(3,1)代入y=kx+b得,解得,
    所以一次函数的解析式是:y=x﹣2;
    (2)x=0,x﹣2=0,解得x=2,则D(2,0),
    所以S△AOC=S△OCD+S△AOD=×2×(1+3)=1.
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
    17、①菜地离小明家1.1千米,小明走到菜地用了15分钟;②小明给菜地浇水用了10分钟;③玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是0.08千米/分钟.
    【解析】
    ①根据函数图象可以直接写出菜地离小明家多远,小明走到菜地用了多少时间;
    ②根据函数图象中的数据可以得到小明给菜地浇水用了多少时间;
    ③根据函数图象中的数据可以得到玉米地离菜地、小明家多远,小明从玉米地走回家平均速度是多少.
    【详解】
    ①由图象可得,
    菜地离小明家1.1千米,小明走到菜地用了15分钟;
    ②25-15=10(分钟),
    即小明给菜地浇水用了10分钟;
    ③2-1.1=0.9(千米)
    玉米地离菜地、小明家的距离分别为0.9千米,2千米,
    小明从玉米地走回家平均速度是2÷(80-55)=0.08千米/分钟.
    本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    18、 (1)证明见解析;(2) 的长度为 2,的长度为 .
    【解析】
    (1)由在平行四边形 中,、 的平分线 分别与线段交于点 ,易求得 ,即可得,证得 ,易证得与 是等腰三角形,即可得 ,,又由 ,即可证得;
    (2)由(1)易求得 ,,即可求得 的长;过点 作 交 的延长线于点 ,易证得四边形 为平行四边形,即可得是直角三角形,然后利用勾股定理,即可求得 的长.
    【详解】
    (1) 证明:∵ 平分,
    ∴.
    ∵平分,
    ∴.
    ∵ 四边形 平行四边形,
    ∴,,,
    ∴,
    ∴.
    ∴.
    ∴;
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵.
    ∴;
    (2) 解:∵,
    ∴.
    ∴,
    ∵四边形 平行四边形,
    ∴.
    ∴,
    ∴,
    过点 作 交 的延长线于点 .
    ∴.
    ∵,
    ∴四边形 为平行四边形.
    ∴,.
    ∴,
    ∴在 中:.
    ∴ 的长度为 2,的长度为 .
    故答案为:(1)证明见解析;(2) 的长度为 2,的长度为 .
    本题考查平行四边形的判定与性质、等腰三角形的判定与性质、垂直的定义以及 勾股定理等知识.此题综合性较强,难度较大,注意掌握数形结合思想的应用,注意掌握辅助线的作法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(8,4)
    【解析】
    首先证明OA=BC=6,根据点C坐标即可推出点B坐标;
    【详解】
    解:∵A(6,0),
    ∴OA=6,
    ∵四边形OABC是平行四边形,
    ∴OA=BC=6,
    ∵C(2,4),
    ∴B(8,4),
    故答案为(8,4).
    本题考查平行四边形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握基本知识属于中考常考题型.
    20、y=2x-3.
    【解析】
    根据题意可得点B的坐标为(0,-1),AE=2,根据EF平分矩形ABCD的面积,先求出点F的坐标,再利用待定系数法求函数解析式即可.
    【详解】
    ∵AB=2,点A的坐标为(0,1),
    ∴OB=1,∴点B坐标为(0,-1),
    ∵点E(2,1),
    ∴AE=2,ED=AD-AE=1,
    ∵EF平分矩形ABCD的面积,
    ∴BF=DE,
    ∴点F的坐标为(1,-1),
    设直线EF的解析式为y=kx+b,将点E和点F的坐标代入可得,

    解得k=2,b=-3
    ∴EF的解析式为y=2x-3.
    故答案为:y=2x-3.
    本题考查了矩形的性质和待定系数法求一次函数解析式,正确求得点F的坐标为(1,-1)是解决问题的关键.
    21、105
    【解析】
    根据三角板上的特殊角度,外角与内角的关系解答.
    【详解】
    根据三角板角度的特殊性可知∠AEB=45°,∠B=60°,
    ∵∠α是△BDE的外角,
    ∴∠α=∠AEB+∠B=45°+60°=105°
    故答案为:105.
    此题考查三角形的外角性质,解题关键在于掌握其性质定义和三角板的特殊角.
    22、1
    【解析】
    这组数据的平均数为:(-1+1+0+1+3)÷5=1,所以方差=[(-1-1)1+(0-1)1+(1-1)1+(1-1)1+(3-1)1]=1.
    23、2.25h
    【解析】
    根据待定系数法,可得一次函数解析式,根据函数值,可得相应自变量的值
    【详解】
    设AB段的函数解析式是y=kx+b,
    y=kx+b的图象过A(1.5,90),B(2.5,170)

    解得
    ∴AB段函数的解析式是y=80x-30
    离目的地还有20千米时,即y=170-20=150km,
    当y=150时,80x-30=150
    解得:x=2.25h,
    故答案为:2.25h
    此题考查函数的图象,看懂图中数据是解题关键
    二、解答题(本大题共3个小题,共30分)
    24、3b(a﹣1)1.
    【解析】
    首先提取公因式3b,再利用完全平方公式分解因式得出答案.
    【详解】
    原式=3b(a1﹣4a+4)
    =3b(a﹣1)1.
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    25、(1)1;(1)证明见解析;(3)≤OD≤1.
    【解析】
    (1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;
    (1)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
    (3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.
    【详解】
    解:∵直线AB的解析式为y=﹣1x+4,
    ∴点A的坐标为(1,0),点B的坐标为(0,4),即可得OB=4,OA=1,
    (1)当点C与点O重合时如图所示,
    ∵DE垂直平分BC(BO),
    ∴DE是△BOA的中位线,
    ∴DE=OA=1;
    故答案为:1;
    (1)当CE∥OB时,如图所示:
    ∵DE为BC的中垂线,
    ∴BD=CD,EB=EC,
    ∴∠DBC=∠DCB,∠EBC=∠ECB,
    ∴∠DCE=∠DBE,
    ∵CE∥OB,
    ∴∠CEA=∠DBE,
    ∴∠CEA=∠DCE,
    ∴BE∥DC,
    ∴四边形BDCE为平行四边形,
    又∵BD=CD,
    ∴四边形BDCE为菱形.
    (3)当点C与点O重合时,OD取得最大值,此时OD=OB=1;
    当点C与点A重合时,OD取得最小值,如图所示:
    在Rt△AOB中,AB==1,
    ∵DE垂直平分BC(BA),
    ∴BE=BA=,
    易证△BDE∽△BAO,
    ∴,即,
    解得:BD=,
    则OD=OB﹣BD=4﹣=.
    综上可得:≤OD≤1.
    本题考查一次函数综合题.
    26、(1)直线DE的函数关系式为:y=﹣x+8;(2)点F的坐标为;(4,4);m=;(3)18.
    【解析】
    试题分析:(1)由顶点B的坐标为(6,4),E为AB的中点,可求得点E的坐标,又由过点D(8,0),利用待定系数法即可求得直线DE的函数关系式;
    (2)由(1)可求得点F的坐标,又由函数y=mx﹣2的图象经过点F,利用待定系数法即可求得m值;
    (3)首先可求得点H与G的坐标,即可求得CG,OC,CF,OH的长,然后由S四边形OHFG=S梯形OHFC+S△CFG,求得答案.
    解:(1)设直线DE的解析式为:y=kx+b,
    ∵顶点B的坐标为(6,4),E为AB的中点,
    ∴点E的坐标为:(6,2),
    ∵D(8,0),
    ∴,
    解得:,
    ∴直线DE的函数关系式为:y=﹣x+8;
    (2)∵点F的纵坐标为4,且点F在直线DE上,
    ∴﹣x+8=4,
    解得:x=4,
    ∴点F的坐标为;(4,4);
    ∵函数y=mx﹣2的图象经过点F,
    ∴4m﹣2=4,
    解得:m=;
    (3)由(2)得:直线FH的解析式为:y=x﹣2,
    ∵x﹣2=0,
    解得:x=,
    ∴点H(,0),
    ∵G是直线DE与y轴的交点,
    ∴点G(0,8),
    ∴OH=,CF=4,OC=4,CG=OG﹣OC=4,
    ∴S四边形OHFG=S梯形OHFC+S△CFG=×(+4)×4+×4×4=18.
    题号





    总分
    得分
    批阅人

    相关试卷

    2025届山东省邹平唐村中学九上数学开学调研模拟试题【含答案】:

    这是一份2025届山东省邹平唐村中学九上数学开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2025届山东省日照专用九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2025届山东省日照专用九上数学开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2025届山东省九上数学开学学业水平测试模拟试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map