2024年山东省武城县数学九年级第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:
则在这次活动中,该班同学捐款金额的众数和中位数分别是( )
A.20元,30元B.20元,35元C.100元,35元D.100元,30元
2、(4分)点 A2, 3关于原点的对称点的坐标是( )
A. 2, 3 B.2, 3 C. 2, 3 D. 3, 2
3、(4分)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是( )
A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度
C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度
4、(4分)将五个边长都为 2 的正方形按如图所示摆放,点 分别是四个正方形的中心,则图中四块阴影面积的和为( )
A.2B.4C.6D.8
5、(4分)如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F,若DF=3,则AC的长为( )
A.B.3C.6D.9
6、(4分)用反证法证明命题:“四边形中至少有一个角是钝角或直角”时,首先应该假设这个四边形中( )
A.有一个角是钝角或直角B.每一个角都是钝角
C.每一个角都是直角D.每一个角都是锐角
7、(4分)分式为0的条件是( )
A.B.C.D.
8、(4分)若,则下列不等式成立的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知△ABC是面积为4的等边三角形,△ABC∽△ADE,
AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积
等于___(结果保留根号).
10、(4分)一组数据2,6,,10,8的平均数是6,则这组数据的方差是______.
11、(4分)如图,点关于原点中心对称,且点在反比例函数的图象上,轴,连接,则的面积为______.
12、(4分)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为40,则OH的长等于_____.
13、(4分)当x=﹣1时,代数式x2+2x+2的值是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)
15、(8分)如图,矩形纸片ABCD中,AB=8,AD=6,折叠纸片使AD边落在对角线BD上,点A落在点A′处,折痕为DG,求AG的长.
16、(8分)计算:
17、(10分)(1)如图1,四边形ABCD是平行四边形,E为BC上任意一点,请仅用无刻度直尺,在边AD上找点F,使.
(2)如图2,四边形ABCD是菱形,E为BC上任意一点,请仅用无刻度直尺,在边DC上找点M,使.
18、(10分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
(1)当时,求关于工的函数表达式,
(2)求点的坐标.
(3)求高铁在时间段行驶的路程.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________
20、(4分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.
21、(4分)将直线y=2x+1向下平移3个单位长度后所得直线的表达式是 ______.
22、(4分)为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,则估计湖里约有鱼_______条.
23、(4分)有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种____棵树.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知等腰三角形的周长是,底边是腰长的函数。
(1)写出这个函数的关系式;
(2)求出自变量的取值范围;
(3)当为等边三角形时,求的面积。
25、(10分)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次统计共抽查了________名学生;在扇形统计图中,表示“”的扇形所占百分数为__________;
(2)将条形统计图补充完整;
(3)该校共有名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
(4)某天甲、乙两名同学都想从“微信”、“”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.
26、(12分)如图,在▱ABCD中,AC、BD交于点O,BD⊥AD于点D,将△ABD沿BD翻折得到△EBD,连接EC、EB.
(1)求证:四边形DBCE是矩形;
(2)若BD=4,AD=3,求点O到AB的距离.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
观察图表可得,捐款金额为20元的学生数最多为20人,所以众数为20元;已知共有50位同学捐款,可得第25位同学和26位同学捐款数的平均数为中位数,即中位数为=30元;故选A.
2、C
【解析】
根据直角坐标系中两个关于原点的对称点的坐标特点:“关于原点对称的点,横坐标、纵坐标都互为相反数”进行解答.
【详解】
由直角坐标系中关于原点对称的点的坐标特点:横坐标、纵坐标都互为相反数,可得点P(2,−3)关于坐标原点的对称点的坐标为(−2,3),
故答案为:C.
本题考查了直角坐标系中关于原点对称的两点的坐标特征,牢牢掌握其坐标特征是解答本题的关键点.
3、A
【解析】
利用一次函数图象的平移规律,左加右减,上加下减,得出即可.
【详解】
∵将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,
∴-2(x+a)-2=-2x+4,
解得:a=-3,
故将l1向右平移3个单位长度.
故选A.
此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.
4、B
【解析】
连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.
【详解】
解:如图,连接AP,AN,点A是正方形的对角线的交
则AP=AN,∠APF=∠ANE=45°,
∵∠PAF+∠FAN=∠FAN+∠NAE=90°,
∴∠PAF=∠NAE,
∴△PAF≌△NAE,
∴四边形AENF的面积等于△NAP的面积,
而△NAP的面积是正方形的面积的,而正方形的面积为4,
∴四边形AENF的面积为1cm1,四块阴影面积的和为4cm1.
故选B.
【点评】
本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.
5、C
【解析】
首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠1,根据角平分线的定义推知∠1=∠1,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.即可得出结论.
【详解】
解:如图,∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠1.
又∵AF平分∠CAB,∴∠1=∠1,∴∠1=∠2,∴AD=DF=1,∴AC=2AD=2.
故选C.
本题考查了三角形中位线定理,等腰三角形的判定.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.
6、D
【解析】
假设与结论相反,可假设“四边形中没有一个角是直角或钝角”.
【详解】
假设与结论相反;
可假设“四边形中没有一个角是直角或钝角”;
与之同义的有“四边形中每一个角都是锐角”;
故选:D
本题考查了反证法,解题的关键在于假设与结论相反.
7、C
【解析】
根据分式的分子等于0求出m即可.
【详解】
由题意得:2m-1=0,解得,此时,
故选:C.
此题考查依据分式值为零的条件求未知数的值,正确掌握分式值为零的条件:分子为零,分母不为零.
8、B
【解析】
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A错误,其余选型根据不等式的性质判定即可.
【详解】
A: a>b,则a-5>b-5,故A错误;
B:a>b, -a<-b,则-2a<-2b, B选项正确.
C:a>b, a+3>b+3,则>,则C选项错误.
D:若0>a>b时,a2<b2,则D选项错误.
故选B
本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3-
【解析】
根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后求出其边长,过点F作FH⊥AE,过C作CM⊥AB,利用三角函数求出HF的值,即可得出三角形AFE的面积.
【详解】
解:作CM⊥AB于M,
∵等边△ABC的面积是4,
∴设BM=x,∴tan∠BCM=,
∴BM=CM,
∴×CM×AB=×2×CM2=4,
∴CM=2,BM=2,
∴AB=4,AD=AB=2,
在△EAD中,作HF⊥AE交AE于H,
则∠AFH=45°,∠EFH=30°,
∴AH=HF,
设AH=HF=x,则EH=xtan30°=x.
又∵AH+EH=AE=AD=2,
∴x+x=2,
解得x=3-.
∴S△AEF=×2×(3-)=3-.
故答案为3-
10、8.
【解析】
根据这组数据的平均数是6,写出平均数的表示式,得到关于x的方程,求出其中x的值,再利用方差的公式,写出方差的表示式,得到结果.
【详解】
∵数据2,6,,10,8的平均数是6,
∴
∴x=4,
∴这组数据的方差是.
考点: 1.方差;2.平均数.
11、1
【解析】
根据反比例函数的比例系数k的几何意义得到S△BOC=|k|=1,然后根据等底同高的三角形相等,得到S△AOC=S△BOC=1,即可求得△ABC的面积为1.
【详解】
解:∵BC⊥x轴,
∴S△BOC=|k|=1,
∵点A,B关于原点中心对称,
∴OA=OB,
∴S△AOC=S△BOC=1,
∴S△ABC=S△AOC+S△BOC=1,
故答案为:1.
本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
12、2
【解析】
首先求得菱形的边长,则OH是直角△AOD斜边上的中线,依据直角三角形的性质即可求解.
【详解】
AD=×40=1.
∵菱形ANCD中,AC⊥BD.
∴△AOD是直角三角形,
又∵H是AD的中点,
∴OH=AD=×1=2.
故答案是:2.
本题考查了菱形的性质和直角三角形的性质,直角三角形斜边上的中线等于斜边的一半.
13、24
【解析】
将原式化为x2+2x+1+1的形式并运用完全平方公式进行求解.
【详解】
解:原式=(x+1)2+1=(﹣1+1)2+1=23+1=24,
故答案为24.
观察并合理使用因式分解的相关公式可以大大简化计算过程.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
分析:题设作为已知条件,结论作为求证,画出图形,写出已知,求证,然后证明即可.
详解:
已知:如图,在四边形ABCD中,AB=CD,AD=BC.
求证:四边形ABCD是平行四边形.
证明:连结AC
在ΔABC和ΔCDA中.
∵AB=CD,BC=DA,AC=CA,
∴ ΔABC≌ΔCDA,
∴ ∠BAC=∠DCA,∠ACB=∠CAD,
∴ AB//CD,AD//BC,
∴四边形ABCD是平行四边形.
点睛:本题考查了平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是熟练掌握命题的证明方法,学会写已知求证,属于中考常考题型.
15、AG=1.
【解析】
由折叠的性质得∠BA′G=∠DA′G=∠A=90°,A′D=6,由勾股定理得BD=10,得出A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得出方程,解方程即可得出结果.
【详解】
∵矩形ABCD折叠后AD边落在BD上,
∴∠BA′G=∠DA′G=∠A=90°,
∵AB=8,AD=6,
∴A′D=6,BD===10,
∴A′B=4,
设AG=A′G=x,则GB=8-x,
由勾股定理得:x2+42=(8-x)2,解得:x=1,
∴AG=1.
本题主要考查折叠的性质、矩形的性质、勾股定理,熟练掌握折叠的性质、勾股定理是解题的关键.
16、1-
【解析】
根据实数的性质进行化简即可求解.
【详解】
解:原式= +2- -1-
=1-
此题主要考查实数的运算,解题的关键是熟知实数的性质.
17、(1)答案见解析;(2)答案见解析.
【解析】
(1)先连接AC、BD,再连接对角线交点O与E点与DA的交点F即为所求;
(2)连接AC,DE交于点O,再连接O点与B点交CD于M点,M点即为所求.
【详解】
解:(1)如下图,点F即为所求:
(2)如下图,点M即为所求:
本题考查的是无刻度尺规作图,主要用到的知识点为三角形全等的判定与性质.
18、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.
【解析】
(1)根据函数图象中的数据可以求得OA段对应的函数解析式;
(2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;
(3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.
【详解】
(1)当时,
设关于的函数表达式是,
,得,
即当,关于的函数表达式是.
(2)设段对应的函数解析式为,
得
即段对应的函数表达式为.
当时,,
即点的坐标为.
(3)(千米),
答:高铁在时段共行驶了千米.
考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
解:∵四边形ABCD是菱形,AC=2,BD=,
∴∠ABO=∠CBO,AC⊥BD.
∵AO=1,BO=,
∴AB=2,
∴sin∠ABO==
∴∠ABO =30°,
∴∠ABC=∠BAC =60°.
由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;
∵∠ABO=∠CBO,
∴BE=BF,
∴△BEF是等边三角形,
∴∠BEF=60°,
∴∠OEF=60°,
∴∠AEO=60°,
∵∠BAC =60°.
∴△AEO是等边三角形,,
∴AE=OE,
∴BE=AE,同理BF=FC,
∴EF是△ABC的中位线,
∴EF=AC=1,AE=OE=1.
同理CF=OF=1,
∴五边形AEFCD的周长为=1+1+1+2+2=2.
故答案为2.
20、1
【解析】
求出x1,x2即可解答.
【详解】
解:∵x2﹣x=0,
∴x(x﹣1)=0,
∵x1<x2,
∴解得:x1=0,x2=1,
则x2﹣x1=1﹣0=1.
故答案为:1.
本题考查一元二次方程的根求解,按照固定过程求解即可,较为简单.
21、y=1x-1
【解析】
直线y=1x+1向下平移3个单位长度,根据函数的平移规则“上加下减”,可得平移后所得直线的解析式为y=1x+1﹣3=1x﹣1.
考点:一次函数图象与几何变换.
22、1500
【解析】
300条鱼里有30条作标记的,则作标记的所占的比例是30÷300=10%,即所占比例为10%.而有标记的共有150条,据此比例即可解答.
【详解】
150÷(30÷300)=1500(条).
故答案为:1500
本题考查的是通过样本去估计总体.
23、21
【解析】
先利用勾股定理求出斜边为130米,根据数的间距可求出树的棵数.
【详解】
∵斜坡的水平距离为120米,高50米,
∴斜坡长为米,
又∵树的间距为6.5,
∴可种130÷6.5+1=21棵.
此题主要考察勾股定理的的应用.
二、解答题(本大题共3个小题,共30分)
24、(1)y=18-2x,(2),(3)cm2.
【解析】
(1)根据等腰三角形周长公式可求出底边长与腰的函数关系式;
(2)由三角形两边之和大于第三边的关系可知x的取值范围;
(3)当为等边三角形时, AB=BC=AC=6,根据勾股定理求出三角形的高,然后根据三角形的面积公式求解即可.
【详解】
(1)等腰三角形的底边长为y、腰长为x,
依题意和已知,有:
∵y+2x=18,
∴y=18-2x;
(2)∵,
∴18-2x>0,
∴x<9,
另:依据三角形的性质有:,
∴.
(3)当为等边三角形时, AB=BC=AC=6cm,
作AD⊥BC于点D,则∠BAD=30°,BD=3cm,
∴AD=cm,
∴ cm2.
本题考查了等腰三角形的性质,等边三角形的性质,含30°角的直角三角形的性质,勾股定理,以及一次函数的几何应用,熟练掌握各知识点是解答本题的关键.
25、(1)100、30%;(2)见详解;(3)800人;(4)
【解析】
(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出使用QQ的百分比即可求出QQ的扇形圆心角度数.
(2)计算出短信与微信的人数即可补全统计图.
(3)用样本中喜欢用微信进行沟通的百分比来估计2500名学生中喜欢用微信进行沟通的人数即可求出答案;
(4)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率.
【详解】
解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,
∴此次共抽查了:20÷20%=100人,
喜欢用QQ沟通所占比例为:,
故答案为:100、30%;
(2)喜欢用短信的人数为:100×5%=5人,
喜欢用微信的人数为:100-20-5-30-5=40人,
补充图形,如图所示:
(3)喜欢用微信沟通所占百分比为:×100%=40%,
∴该校共有2000名学生,请估计该校最喜欢用“微信”进行沟通的学生有:
2000×40%=800人;
(4)画出树状图,如图所示
所有情况共有9种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有3种情况,
故甲、乙两名同学恰好选中同一种沟通方式的概率为:.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
26、(1)见解析;(2)点O到AB的距离为.
【解析】
(1)先利用折叠的性质和平行四边形的性质得出DE∥BC,DE=BC,则四边形DBCE是平行四边形,再利用BE=CD即可证明四边形DBCE是矩形;
(2)过点O作OF⊥AB,垂足为F,先利用勾股定理求出AB的长度,然后利用 面积即可求出OF的长度,则答案可求.
【详解】
(1)由折叠性质可得:AD=DE,BA=BE,
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,BA=CD,
∴DE∥BC,DE=BC,
∴四边形DBCE是平行四边形,
又∵BE=CD,
∴四边形DBCE是矩形.
(2)过点O作OF⊥AB,垂足为F,
∵BD⊥AD,
∴∠ADB=90°,
在Rt△ADB中,BD=4,AD=3,
由勾股定理得:AB=,
又∵四边形ABCD是平行四边形,
∴OB=OD=,
∴
答:点O到AB的距离为.
本题主要考查平行四边形的性质,矩形的判定,勾股定理,掌握平行四边形的性质,矩形的判定,勾股定理并能够利用三角形面积进行转化是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
金额(元)
20
30
35
50
100
学生数(人)
20
10
5
10
5
2024年山东省兰陵县九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024年山东省兰陵县九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省济南市实验中学九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024年山东省济南市实验中学九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省惠民县联考数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024年山东省惠民县联考数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。