期海南省五指山中学2025届数学九上开学复习检测模拟试题【含答案】
展开这是一份期海南省五指山中学2025届数学九上开学复习检测模拟试题【含答案】,共29页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一个多边形内角和是外角和的4倍,则这个多边形是( )
A.八边形B.九边形C.十边形D.十二边形
2、(4分)当x分别取-2019、-2018、-2017、…、-2、-1、0、1、、、…、、、时,分别计算分式的值,再将所得结果相加,其和等于( )
A.-1B.1C.0D.2019
3、(4分)如果成立,那么实数a的取值范围是( )
A.B.C.D.
4、(4分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为51和38,则△EDF的面积为( )
A.6.5B.5.5C.8D.13
5、(4分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,乙从B地到A地需要( )分钟
A.12B.14C.18D.20
6、(4分)若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是( )
A.k<3B.k<0C.k>3D.0<k<3
7、(4分)如图,在四边形中,,分别是的中点,则四边形一定是( )
A.平行四边形B.矩形C.菱形D.正方形
8、(4分)直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为( )
A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线y=-x-与x,y两轴分别交于A,B两点,与反比例函数y=的图象在第二象限交于点C.过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的纵坐标为___.
10、(4分)如图,在四边形中,对角线相交于点,则四边形的面积是_____.
11、(4分)如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是__________.
12、(4分)如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则△PBD与△PAC的面积比为_____.
13、(4分)如图,在△ABC中,AB=5,AC=7,BC=10,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,则PQ的长______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).
15、(8分)为了了解某种电动汽车的性能,某机构对这种电动汽车进行抽检,获得如图中不完整的统计图,其中,,,表示 一次充电后行驶的里程数分别为,,,.
(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;
电动汽车一次充电后行驶里程数的条形统计图
电动汽车一次充电后行驶里程数的扇形统计图
(2)求扇形统计图中表示一次充电后行驶路为的扇形圆心角的度数;
(3)估计这种电动汽车一次充电后行驶的平均里程多少?
16、(8分)如图1,将矩形纸片ABCD沿对角线BD向上折叠,点C落在点E处,BE交AD于点F.
(1)求证:BF=DF;
(2)如图2,过点D作DG∥BE交BC于点G,连接FG交BD于点O,若AB=6,AD=8,求FG的长.
17、(10分)类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.
(1)已知:如图1,在“准等边四边形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的长;
(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;
(3)如图2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分线上是否存在点P,使得以A,B,C,P为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.
18、(10分)如图,在边长为正方形中,点是对角线的中点,是线段上一动点(不包括两个端点),连接.
(1)如图1,过点作交于点,连接交于点.
①求证:;
②设,,求与的函数关系式,并写出自变量的取值范围.
(2)在如图2中,请用无刻度的直尺作出一个以为边的菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算的结果是______.
20、(4分)分解因式:___________.
21、(4分)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_______.
22、(4分)在三角形中,点分别是的中点,于点,若,则________.
23、(4分)如图,在平面直角坐标系中,菱形OABC的顶点O是原点,顶点B在y轴正半轴上,顶点A在第一象限,菱形的两条对角线长分别是8和6,函数y= (x<0)的图象经过点C,则k的值为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.
(1)求证:四边形AGPH是矩形;
(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.
25、(10分)(问题原型)如图,在中,对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.
(小海的证法)证明:
是的垂直平分线,
,(第一步)
,(第二步)
.(第三步)
四边形是平行四边形.(第四步)
四边形是菱形. (第五步)
(老师评析)小海利用对角线互相平分证明了四边形是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.
(挑错改错)(1)小海的证明过程在第________步上开始出现了错误.
(2)请你根据小海的证题思路写出此题的正确解答过程,
26、(12分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D为AC边上的个动点,点D从点A出发,沿边AC向C运动,当运动到点C时停止,设点D运动时间为t秒,点D运动的速度为每秒1个单位长度的.
(1)当t=2时,求CD的长;
(2)求当t为何值时,线段BD最短?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.
【详解】
设这个多边形的边数为n,
则(n-2)×180°=4×360°,
解得:n=10,
故选C.
本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n变形的内角和为:(n-2) ×180°, n变形的外角和为:360°;然后根据等量关系列出方程求解.
2、A
【解析】
设a为负整数,将x=a代入得:,将x=-代入得:,故此可知当x互为负倒数时,两分式的和为0,然后求得分式的值即可.
【详解】
∵将x=a代入得:,将x=-代入得:,
∴,
当x=0时,=-1,
故当x取-2019,-2018,-2017,……,-2,-1,0,1,,,……,,,时,得出分式的值,再将所得结果相加,其和等于:-1.
故选A.
本题主要考查的是数字的变化规律和分式的加减,发现当x的值互为负倒数时,两分式的和为0是解题的关键.
3、B
【解析】
即
故选B.
4、A
【解析】
过点D作DH⊥AC于H,利用角平分线的性质得到DF=DH,将三角形EDF的面积转化为三角形DGH的面积来求.
【详解】
如图,过点D作DH⊥AC于H,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,
∴Rt△DEF≌Rt△DGH(HL),
∴S△DEF=S△DGH,
∵△ADG和△AED的面积分别为51和38,
∴△EDF的面积=.
故选A.
本题考查的知识点是角平分线的性质及全等三角形的判定及性质,解题关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.
5、A
【解析】
根据题意,得到路程和甲的速度,然后根据相遇问题,设乙的速度为x,列出方程求解,然后即可求出乙需要的时间.
【详解】
解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,
∴甲的速度是:1÷6=千米/分钟,
由纵坐标看出AB两地的距离是16千米,
设乙的速度是x千米/分钟,由题意,得:
10x+16×=16,
解得:x=,
∴乙从B地到A地需要的时间为:(分钟);
故选:A.
本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.
6、D
【解析】
由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.
【详解】
∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,
∴,
解得:0<k<3,
故选:D.
本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.
7、B
【解析】
根据三角形中位线定理,平行四边形的判定定理得到四边形EFGH为平行四边形,证明∠FGH=90°,根据矩形的判定定理证明.
【详解】
∵E,F分别是边AB,BC的中点,
∴EF=AC,EF∥AC,
同理,HG=AC,HG∥AC,
∴EF=HG,EF∥HG,
∴四边形EFGH为平行四边形,
∵F,G分别是边BC,CD的中点,
∴FG∥BD,
∵
∴∠FGH=90°,
∴平行四边形EFGH为矩形,
故选B.
本题考查的是中点四边形,掌握三角形中位线定理,矩形的判定定理是解题的关键.
8、C
【解析】
根据点P所在象限先确定P点横纵坐标都是负数,根据P到x轴和y轴的距离确定点的坐标.
【详解】
解:∵点P(x,y)在第三象限,
∴P点横纵坐标都是负数,
∵P到x轴和y轴的距离分别为3、4,
∴点P的坐标为(-4,-3).
故选:C.
此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
作CH⊥x轴于H,如图,先利用一次函数解析式确定B(0,-),A(-3,0),再利用三角函数的定义计算出∠OAB=30°,则∠CAH=30°,设D(-3,t),则AC=AD=t,接着表示出CH=AC=t,AH=CH=t得到C(-3-t,t),然后利用反比例函数图象上点的坐标特征得到(-3-t)•t=3t,最后解方程即可.
【详解】
作CH⊥x轴于H,如图,
当x=0时,y=-x-=-,则B(0,-),
当y=0时,-x-=0,解得x=-3,则A(-3,0),
∵tan∠OAB=,
∴∠OAB=30°,
∴∠CAH=30°,
设D(-3,t),则AC=AD=t,
在Rt△ACH中,CH=AC=t,AH=CH=t,
∴C(-3-t,t),
∵C、D两点在反比例函数图象上,
∴(-3-t)•t=3t,解得t=2,
即D点的纵坐标为2.
故答案为2.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
10、24
【解析】
判断四边形ABCD为平行四边形,即可根据题目信息求解.
【详解】
∵在中
∴四边形ABCD为平行四边形
∴
故答案为:24
本题考查了平行四边形的判定,解题的关键在于根据题目中的数量关系得出四边形ABCD为平行四边形.
11、(0,1).
【解析】
试题分析:根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
试题解析:如图,
连接AD、BE,作线段AD、BE的垂直平分线,
两线的交点即为旋转中心O′.其坐标是(0,1).
考点: 坐标与图形变化-旋转.
12、1:1
【解析】
以点A为原点,建立平面直角坐标系,则点B(3,1),C(3,0),D(2,1),如下图所示:
设直线AB的解析式为yAB=kx,直线CD的解析式为yCD=ax+b,
∵点B在直线AB上,点C、D在直线CD上,
∴1=3k, 解得:k= , ,
∴yAB=x, yCD=-x+3,
∴点P的坐标为( , ),
∴S△PBD :S△PAC= .
故答案是:1:1.
13、1
【解析】
证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,根据三角形中位线定理计算即可.
【详解】
解:在△ABQ和△EBQ中,
,
∴△ABQ≌△EBQ(ASA),
∴BE=AB=5,AQ=QE,
同理CD=AC=7,AP=PD,
∴DE=CD-CE=CD-(BC-BE)=2,
∵AP=PD,AQ=QE,
∴PQ=DE=1,
故答案为:1.
本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、1
【解析】
试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.
考点:相似三角形的应用.
15、(1)总共有辆.类有10辆,图略;(2)72°;(3)这种电动汽车一次充电后行驶的平均里程数为千米.
【解析】
(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出这次被抽检的电动汽车总量,再分别减去B、C、D等级的辆数,得到A等级的辆数,即可补全条形图;
(2)用D等级的辆数除以汽车总量,得到其所占的百分比,再乘以360°得到扇形圆心角的度数;
(3)用总里程除以汽车总辆数,即可解答.
【详解】
解:(1)这次被抽检的电动汽车共有30÷30%=100(辆).
A等级汽车数量为:100-(30+40+20)=10(辆).
条形图补充如下:
(2)D等级对应的圆心角度数为.
(3).
答:这种电动汽车一次充电后行驶的平均里程数为千米.
本题考查条形统计图、扇形统计图和加权平均数的定义,解题的关键是明确题意,找出所求问题需要的条件.
16、(1)证明见解析;(2).
【解析】
(1)根据两直线平行内错角相等及折叠特性判断;
(2)根据已知矩形性质及第一问证得邻边相等判断四边形BFDG是菱形,再根据折叠特性设未知边,构造勾股定理列方程求解.
【详解】
(1)证明:根据折叠得,∠DBC=∠DBE,
又AD∥BC,
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,
∴DF=BF;
(2)∵四边形ABCD是矩形,
∴AD∥BC,
∴FD∥BG,
又∵DG∥BE,
∴四边形BFDG是平行四边形,
∵DF=BF,
∴四边形BFDG是菱形;
∵AB=6,AD=8,
∴BD=1.
∴OB= BD=2.
假设DF=BF=x,∴AF=AD-DF=8-x.
∴在直角△ABF中,AB2+AF2=BF2,即62+(8-x)2=x2,
解得x=,
即BF=,
∴,
∴FG=2FO=.
此题考查了四边形综合题,结合矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
17、(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:,,,
【解析】
(1)根据勾股定理计算BC的长度,
(2)根据对角线互相垂直平分的四边形是菱形判断,
(3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.
【详解】
(1)∵BD⊥CD
∴∠BDC=90°,BC>CD
∵在“准等边四边形”ABCD中,BC≠AB,
∴AB=AD=CD=3,
∵BD=4,
∴BC=,
(2)正确.
如图所示:
∵AB=AD
∴ΔABD是等腰三角形.
∵AC⊥BD.
∴AC垂直平分BD.
∴BC=CD
∴CD =AB=AD=BC
∴四边形 ABCD是菱形.
(3)存在四种情况,
如图2,四边形ABPC是“准等边四边形”,过C作于F,则,
∵EP是AB的垂直平分线,
∴ ,
∴四边形AEFC是矩形,
在中, ,
∴ ,
∵
∴
∴
如图4,四边形ABPC是“准等边四边形”,
∵ ,
∴是等边三角形,
∴ ;
如图5,四边形ABPC是“准等边四边形”,
∵ ,PE是AB的垂直平分线,
∴ E是AB的中点,
∴ ,
∴
∴
如图6,四边形ABPC是“准等边四边形”,过P作于F,连接AP,
∵,
∴,
∴
本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.
18、 (1)①见解析;②;(2)见解析
【解析】
(1)①连接DE,如图1,先用SAS证明△CBE≌△CDE,得EB=ED,∠CBE=∠1,再用四边形的内角和可证明∠EBC=∠2,从而可得∠1=∠2,进一步即可证得结论;
②将△BAE绕点B顺时针旋转90°,点E落在点P处,如图2,用SAS可证△PBG≌△EBG,所以PG=EG=2-x-y,在直角三角形PCG中,根据勾股定理整理即得y与x的函数关系式,再根据题意写出x的取值范围即可.
(2)由(1)题已得EB=ED,根据正方形的对称性只需再确定点E关于点O的对称点即可,考虑到只有直尺,可延长交AD于点M,再连接MO并延长交BC于点N,再连接DN交AC于点Q,问题即得解决.
【详解】
(1)①证明:如图1,连接DE,∵四边形ABCD是正方形,
∴CB=CD,∠BCE=∠DCE=45°,
又∵CE=CE,∴△CBE≌△CDE(SAS),
∴EB=ED,∠CBE=∠1,
∵∠BEC=90°,∠BCF=90°,
∴∠EBC+∠EFC=180°,
∵∠EFC+∠2=180°,
∴∠EBC=∠2,
∴∠1=∠2.
∴ED=EF,
∴BE=EF.
②解:∵正方形ABCD的边长为,∴对角线AC=2.
将△BAE绕点B顺时针旋转90°,点A与点C重合,点E落在点P处,如图2,
则△BAE≌△BCP,
∴BE=BP,AE=CP=x,∠BAE=∠BCP=45°,∠EBP=90°,
由①可得,∠EBF=45°,∴∠PBG=45°=∠EBG,
在△PBG与△EBG中,,
∴△PBG≌△EBG(SAS).
∴PG=EG=2-x-y,
∵∠PCG=∠GCB+∠BCP=45°+45°=90°,
∴在Rt△PCG中,由,得,
化简,得.
(2)如图3,作法如下:
①延长交AD于点M,
②连接MO并延长交BC于点N,
③连接DN交AC于点Q,
④连接DE、BQ,
则四边形BEDQ为菱形.
本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q的位置是解决(2)题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
利用二次根式的计算法则正确计算即可.
【详解】
解:
=
=
=1
故答案为:1.
本题考查的是二次根式的混合运算,掌握计算法则是解题关键.
20、ab(a+b)(a﹣b).
【解析】
分析:先提公因式ab,再把剩余部分用平方差公式分解即可.
详解:a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).
点睛:此题考查了综合提公因式法和公式法因式分解,分解因式掌握一提二用,即先提公因式,再利用平方差或完全平方公式进行分解.
21、
【解析】
先证明,再利用全等角之间关系得出,再由H为BF的中点,又为直角三角形,得出,为直角三角形再利用勾股定理得出BF即可求解.
【详解】
,
.
∴∠BEA=∠AFD,
又∵∠AFD+∠EAG=90°,
∴∠BEA+∠EAG=90°,
∴∠BGF=90°.
H为BF的中点,又为直角三角形,
.
∵DF=2,
∴CF=5-2=3.
∵为直角三角形.
∴BF===.
本题主要考查全等三角形判定与性质,勾股定理,直角三角形斜边中线等于斜边一半知识点,熟悉掌握是关键.
22、80°
【解析】
先由中位线定理推出,再由平行线的性质推出,然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF,最后由三角形内角和定理求出.
【详解】
∵点分别是的中点
∴(中位线的性质)
又∵
∴(两直线平行,内错角相等)
∵
∴(两直线平行,同位角相等)
又∵
∴三角形是三角形
∵是斜边上的中线
∴
∴(等边对等角)
∴
本题考查了中位线定理,平行线的性质,直角三角形斜边上的中线等于斜边的一半,和三角形内角和定理.熟记性质并准确识图是解题的关键.
23、-12.
【解析】
根据题意可得点C的坐标为(-4,3),将点C的坐标代入y= 中求得k值即可.
【详解】
根据题意可得点C的坐标为(-4,3),
将点C的坐标代入y= 中,得,
3=,
解得 k=-12.
故答案为:-12.
本题考查了菱形的性质及求反比例函数的解析式,求得点C的坐标为(-4,3)是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2)见解析.
【解析】
(1)根据“矩形的定义”证明结论;
(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.
【详解】
(1)证明∵AC=9 AB=12 BC=15,
∴AC2=81,AB2=144,BC2=225,
∴AC2+AB2=BC2,
∴∠A=90°.
∵PG⊥AC,PH⊥AB,
∴∠AGP=∠AHP=90°,
∴四边形AGPH是矩形;
(2)存在.理由如下:
连结AP.
∵四边形AGPH是矩形,
∴GH=AP.
∵当AP⊥BC时AP最短.
∴9×12=15•AP.
∴AP=.
本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.
25、(1)二; (2)见解析.
【解析】
(1)由垂直平分线性质可知,AC和EF并不是互相平分的,EF垂直平分AC,但AC并不平分EF,需要通过证明才可以得出,故第2步出现了错误;
(2) )根据平行四边形性质求出AD∥BC,推出,证,推出,可得四边形是平行四边形,推出菱形.
【详解】
(1)二
(2)四边形是平行四边形,
.
.
是的垂直平分线,
.
在与中,
.
.
四边形是平行四边形.
.
四边形是菱形.
本题考查菱形的判定,以及平行四边形的性质,关键是掌握对角线互相垂直的平行四边形是菱形
26、(1)8;(2)
【解析】
(1)根据勾股定理即可得到结论;
(2)根据相似三角形的判定和性质定理即可得到结论.
【详解】
(1)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,
∴AC= =10,
当t=2时,AD=2,
∴CD=8;
(2)当BD⊥AC时,BD最短,
∵BD⊥AC,
∴∠ADB=∠ABC=90°,
∵∠A=∠A,
∴△ABD∽△ACB,
∴,即:,
∴AD=,
∴t=,
∴当t为时,线段BD最短.
本题主要考查勾股定理,相似三角形的性质和判定定理,掌握“母子相似”模型,是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份海南省民族中学2024年数学九上开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份海南省儋州三中学2024年九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖南长沙长郡芙蓉中学九上数学开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。