2024年海南省琼海市九上数学开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某市居民用电的电价实行阶梯收费,收费标准如下表:
七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是( ).
A.100B.400C.396D.397
2、(4分)长和宽分别是a, b 的长方形的周长为 10,面积为 6,则a2b ab2的值为( )
A.15B.16C.30D.60
3、(4分)下列各二次根式中,可以与合并的是( )
A.B.C.D.
4、(4分)弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是( )
A.在没挂物体时,弹簧的长度为10cm
B.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量
C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10
D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm
5、(4分)实数a,b在数轴上的位置如图所示,则化简代数式|a+b|−a的结果是( )
A.2a+bB.2aC.aD.b
6、(4分)如图,平行四边形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分点,AE、CF的延长线分别交DC、AB于N、M点,那么四边形MENF的面积是( )
A.B.C.2D.2
7、(4分)函数的图象是双曲线,则m的值是( )
A.-1B.0C.1D.2
8、(4分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于( )
A.10B.9C.8D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;
10、(4分)如图,在平行四边形纸片中,,将纸片沿对角线对折,边与边交于点,此时恰为等边三角形,则重叠部分的面积为_________.
11、(4分)如图,正方形ABCD是由两个小正方形和两个小长方形组成的,根据图形写出一个正确的等式:_________.
12、(4分)如图,点P是平面坐标系中一点,则点P到原点的距离是_____.
13、(4分)如图,已知点 A 是反比例函数 y 在第一象限图象上的一个动点,连接 OA,以OA 为长,OA为宽作矩形 AOCB,且点 C 在第四象限,随着点 A 的运动,点 C 也随之运动,但点 C 始终在反比例函数 y 的图象上,则 k 的值为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图平行四边形ABCD中,对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形
15、(8分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:
(1)请你填写下表中甲班同学的相关数据.
(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?
(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).
16、(8分)如图, 在中,,是延长线上一点,点是的中点。
(1)实践与操作:①作的平分线;②连接并延长交于点,连接(尺规作图,保留作图痕迹,不写作法,在图中标明相应字母);
(2)猜想与证明:猜想四边形的形状,并说明理由。
17、(10分)由中宣部建设的“学习强国”学习平台正式上线。这是推动新时代中国特色社会主义思想、推进马克思主义学习型政党和学习型社会建设的创新举措.某基层党组织随机抽取了部分党员的某天的学习成绩并进行了整理,分成5个小组(表示成绩,单位:分,且),根据学习积分绘制出部分频数分布表和部分频数分布直方图,其中第2、第5两组测试成绩人数直方图的高度比为,请结合下列图标中相关数据回答下列问题:
(1)填空:_____,______;
(2)补全频数分布直方图;
(3)这次积分的中位数落在第______组;
(4)已知该党组织共有党员225人;请估计当天学习积分获得“优秀”等级()的党员有多少人?
18、(10分)将矩形纸片沿对角线翻折,使点的对应点(落在矩形所在平面内,与相交于点,接.
(1)在图1中,
①和的位置关系为__________________;
②将剪下后展开,得到的图形是_________________;
(2)若图1中的矩形变为平行四边形时(),如图2所示,结论①、②是否成立,若成立,请对结论②加以证明,若不成立,请说明理由
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的二次方程(m+1)x2+5x+m2-3m=4的常数项为0,则m的值为______.
20、(4分)若□ABCD中,∠A=50°,则∠C=_______°.
21、(4分)一次函数y=2x+1的图象与x轴的交点坐标为______.
22、(4分)关于的方程有两个整数根,则整数____________.
23、(4分)如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,菱形的对角线、相交于点,,,连接.
(1)求证:;
(2)探究:当等于多少度时,四边形是正方形?并证明你的结论.
25、(10分)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在中,,,点、分别在边、上,,连接、,点、、分别为、、的中点,且连接、.
观察猜想
(1)线段与 “等垂线段”(填“是”或“不是”)
猜想论证
(2)绕点按逆时针方向旋转到图2所示的位置,连接,,试判断与是否为“等垂线段”,并说明理由.
拓展延伸
(3)把绕点在平面内自由旋转,若,,请直接写出与的积的最大值.
26、(12分)已知直线:与轴交于点A.
(1)A点的坐标为 .
(2)直线和:交于点B,若以O、A、B、C为顶点的四边形是平行四边形,求点C的坐标 .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先判断出电费是否超过400度,然后根据不等关系:七月份电费支出不超过200元,列不等式计算即可.
【详解】
解:0.48×200+0.53×200
=96+106
=202(元),
故七月份电费支出不超过200元时电费不超过400度,
依题意有0.48×200+0.53(x-200)≤200,
解得x≤1.
答:李叔家七月份最多可用电的度数是1.
故选:C.
本题考查了列一元一次不等式解实际问题的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等关系.
2、C
【解析】
直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.
【详解】
∵边长分别为a、b的长方形的周长为10,面积6,
∴2(a+b)=10,ab=6,
则a+b=5,
故ab2+a2b=ab(b+a)
=6×5
=1.
故选C.
此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.
3、B
【解析】
化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.
【详解】
A. ∵=2,∴与不能合并;
B. ∵=,∴与能合并;
C. ∵=,∴与不能合并;
D. ∵=,∴与不能合并;
故选B.
本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.
4、B
【解析】
因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.
【详解】
解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;
B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;
C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;
D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;
故选B.
点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
5、D
【解析】
首先根据数轴可以得到a、b的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.
【详解】
由数轴上各点的位置可知:a<0
故选D.
此题考查整式的加减,实数与数轴,解题关键在于结合数轴分析a,b的大小.
6、B
【解析】
由已知条件可得EN与EF的长,进而可得Rt△NEF的面积,即可求解四边形MENF的面积.
【详解】
解:∵E,F为BD的三等分点,
∴DE=EF=BF,
∵AE⊥BD,CF⊥BD,
∴EN∥FC,
∴EN是△DFC的中位线,
∴EN=FC.
∵在Rt△DCF中,∠BDC=30°,DC=4,
∴FC=2,
∴EN=1,
∴在Rt△DEN中,∠EDN=30°,
∴DN=2EN=2,DE==,
∴EF=DE=,
∴S△ENF= ×1×=,
四边形MENF的面积=×2=.
故选B.
本题考查了平行四边形的性质,三角形中位线定理.
7、C
【解析】
根据反比例函数的定义列出关于m的不等式组,求出m的值即可.
【详解】
解:∵函数的图象是双曲线,
∴,解得m=1.
故选:C.
本题考查的是反比例函数的定义,即形如y=(k为常数,k≠0)的函数称为反比例函数.
8、B
【解析】
作EF⊥BC于F,根据角平分线的性质可知EF=DE=3,即可求出△BCE的面积.
【详解】
作EF⊥BC于F,
∵BE平分∠ABC,ED⊥AB,EF⊥BC,
∴EF=DE=3,
∴△BCE的面积=×BC×EF=9,
故选B.
本题考查了角平分线的性质,熟练掌握角平分线的性质:角平分线上的点到角两边的距离相等是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣3<x<1
【解析】
根据第四象限内横坐标为正,纵坐标为负可得出答案.
【详解】
∵点P(2x-6,x-5)在第四象限,
∴
解得-3<x<1.故答案为-3<x<1.
本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.
10、
【解析】
首先根据等边三角形的性质可得A B'=AE=E B',∠B'=∠B'EA=60°,根据折叠的性质,∠BCA=∠B'CA,,再证明∠B'AC=90°,再证得S△AEC=S△AEB',再求S△A B'C进而可得答案.
【详解】
解:∵为等边三角形,
∴A B'=AE=E B',∠B'=∠B'EA=60°,
根据折叠的性质,∠BCA=∠B'CA,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,AB=CD,
∴∠B'EA=∠B'CB,∠EAC=∠BCA,
∴∠ECA=∠BCA=30°,
∴∠EAC=30°,
∴∠B'AC=90°,
∵,
∴B'C=8,
∴AC==,
∵B'E=AE=EC,
∴S△AEC=S△AEB'= S△A B'C= × ×4×=,
故答案为.
此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握平行四边形的对边平行且相等,直角三角形30°角所对的边等于斜边的一半.
11、
【解析】
由图可得,
正方形ABCD的面积=,
正方形ABCD的面积=,
∴.
故答案为:.
12、1
【解析】
连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.
【详解】
连接PO,∵点P的坐标是(),
∴点P到原点的距离=
=1.
故答案为:1
此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.
13、−3
【解析】
设A(a,b),则ab=,分别过A,C作AE⊥x轴于E,CF⊥x轴于F,根据相似三角形的判定证得△AOE∽△COF,由相似三角形的性质得到OF=,CF=,则k=-OF•CF=-3.
【详解】
设A(a,b),
∴OE=a,AE=b,
∵在反比例函数y=图象上,
∴ab=,
分别过A,C作AE⊥x轴于E,CF⊥x轴于F,
∵矩形AOCB,
∴∠AOE+∠COF=90°,
∴∠OAE=∠COF=90°−∠AOE,
∴△AOE∽△OCF,
∵OC=OA,
∴===,
∴OF=AE=b,CF=OE=a,
∵C在反比例函数y=的图象上,且点C在第四象限,
∴k=−OF⋅CF=−b⋅a=−3ab=−3.
本题考查反比例函数图象上点的坐标特征和矩形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和矩形的性质.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
要证明四边形BFDE是平行四边形,可以证四边形BFDE有两组对边分别相等,即证明BF=DE,EB=DF即可得到.
【详解】
证明:∵ABCD是平行四边形,
∴AB=DC,AB∥DC,
∴∠BAF=∠DCE,
又∵对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF,
所以在△ABF和△DCE中,
,
∴△ABF≌△CDE(SAS),
∴BF=DE,
同理可证:△ADF≌△CBE(SAS),
∴DF=BE,
∴四边形BFDE是平行四边形.
本题主要考查平行四边形的判定(两组对边分别平行,两组对边分别相等,有一组对边平行且相等),掌握判定的方法是解题的关键,在解题过程中,需要灵活运用所学知识,掌握三角形全等的判定或者两直线平行的判定对证明这道题目有着至关重要的作用.
15、(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).
【解析】
(1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;
(2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;
(3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.
【详解】
解:(1)如下表:
(2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人
∴乙组成绩更好一些
(3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;
②从中位数看,甲班每分钟输入135字以上的人数比乙班多;
③从平均数看,两班同学输入的总字数一样,成绩相当;
④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定;
⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).
此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.
16、(1)①见解析,②见解析;(2)四边形是平行四边形,见解析.
【解析】
(1)根据角平分线的做法即可求解;
(2)根据等腰三角形的性质及角平分线的性质证明,即可求证.
【详解】
(1)①作图正确并有轨迹。
②连接并延长交于点,连接;
(2)解:四边形是平行四边形,
理由如下:∵,
∴,
∴,即,
∵平分,∴,∴,
∴,
∵点时中点,∴,
在与中
∴
∴四边形是平行四边形。
此题主要考查平行四边形的判定,解题的关键是熟知角平分线的做法及全等三角形的判定判断与性质.
17、(1)故答案为4,32%;(2)图形见解析;(3)第三组;(4)18 (人)
【解析】
(1)根据3组的人数除以3组所占的百分比,可得总人数,进而可求出1组,4组的所占百分比,则a,b的值可求;
(2)由(1)中的数据即可补全频数分布直方图;
(3)50个人的数据中,中位数是第25和26两人的平均数,
(4)用225乘以“优秀”等级()的所占比重即可求解.
【详解】
(1)由题意可知总人数=15÷30%=50(人),
所以4组所占百分比=10÷50×100%=20%,1组所占百分比=5÷50×100%=10%,
因为2组、5组两组测试成绩人数直方图的高度比为4:1,
所以5a=50−5−15−10,
解得a=4,
所以b=16÷50×100%=32%,
故答案为4,32%;
(2)由(1)可知补全频数分布直方图如图所示:
(3) 50个人的数据中,中位数是第25和26两人的平均数,而第25和26两人都出现在第三组,
(4)(人)
此题考查了频数分布表和条形统计图.认真审题找到两个图表中的关联信息,通过明确的信息推出未知的变量是解题关键.
18、 (1)①平行;②菱形; (2)结论①、②都成立,理由详见解析.
【解析】
(1)①由平行线的性质和折叠的性质可得∠DAC=∠ACE,由∠AB'C=∠ADC=90°,可证点A,点C,点D,点B'四点共圆,可得∠ADB'=∠ACE=∠DAC,可得AC∥B'D;②由菱形的定义可求解;
(2)都成立,设点E的对应点为F,由平行线的性质和折叠的性质可得∠DAC=∠ACE,AF=AE,CE=CF,可得AF=AE=CE=CF,可得四边形AECF是菱形.
【详解】
解:(1)①∵四边形ABCD是矩形
∴AD∥BC,∠B=∠ADC=90°
∴∠DAC=∠ACB
∵将矩形纸片ABCD沿对角线AC翻折,
∴∠AB'C=∠B=90°,∠ACB=∠ACE
∴∠DAC=∠ACE,
∴AE=EC
∵∠AB'C=∠ADC=90°
∴点A,点C,点D,点B'四点共圆,
∴∠ADB'=∠ACE,
∴∠ADB'=∠DAC
∴B'D∥AC,
故答案为:平行
②∵将△AEC剪下后展开,AE=EC
∴展开图形是四边相等的四边形,
∴展开图形是菱形
(2)都成立,
如图2,设点E的对应点为F,
∵四边形ABCD是平行四边形
∴AD∥BC,
∴∠DAC=∠ACB
∵将矩形纸片ABCD沿对角线AC翻折,
∴∠ACB=∠ACE,AF=AE,CE=CF
∴∠DAC=∠ACE,
∴AE=EC
∴AF=AE=CE=CF
四边形是菱形.
本题是四边形综合题,考查了矩形的性质,平行四边形的性质,折叠的性质,菱形的判定,灵活运用这些性质进行推理是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据方程常数项为0,求出m的值即可.
【详解】
解:方程整理得:(m+1)x2+5x+m2-3m-1=0,
由常数项为0,得到m2-3m-1=0,即(m-1)(m+1)=0,
解得:m=1或m=-1,
当m=-1时,方程为5x=0,不合题意,舍去,
则m的值为1.
故答案为:1.
本题考查了一元二次方程的一般形式,以及一元二次方程的定义,将方程化为一般形式是解本题的关键.
20、50
【解析】
因为平行四边形的对角相等,所以∠C=50°,故答案为: 50°.
21、(-,0)
【解析】
令y=0可求得x的值,则可求得与x轴的交点坐标.
【详解】
解:令y=0,即2x+1=0,
解得:x=-,
∴一次函数y=2x+1的图象与x轴的交点坐标为(-,0).
故答案为:(-,0).
本题考查了一次函数与x轴的交点坐标.
22、
【解析】
先计算判别式得到∆=,根据方程有两个整数根确定∆必为完全平方数,由此得到整数k的值.
【详解】
由题意得∆=,
∵方程有两个整数根,
∴∆必为完全平方数,
而k是整数,
∴k-8=0,
∴k=8,
故答案为:8.
此题考查一元二次方程的根的判别式,完全平方公式,正确理解题意是解题的关键.
23、.
【解析】
根据翻折的性质,及已知的角度,可得△AEB’为等边三角形,再由四边形ABCD为平行四边形,且∠B=60°,从而知道B’,A,B三点在同一条直线上,再由AC是对称轴,所以AC垂直且平分BB’,AB=AB’=AE=3,求AE边上的高,从而得到面积.
【详解】
解:∵△CDE恰为等边三角形,
∴∠AEB’=∠DEC=60°,∠D=∠B=∠B’=60°,
∴△AEB’为等边三角形,
由四边形ABCD为平行四边形,且∠B=60°,
∴∠BAD=120°,所以所以∠B’AE+∠DAB=180°,
∴B’,A,B三点在同一条直线上,
∴AC是对折线,
∴AC垂直且平分BB’,
∴AB=AB’=AE=3,AE边上的高,h=CD×sin60°=,
∴面积为.
本题有一个难点,题目并没有说明B’,A,B三点在同一条直线上,虽然图形是一条直线,易当作已知条件,这一点需注意.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)当时,四边形OCED为正方形,见解析.
【解析】
(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,由矩形的性质可得OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,根据正方形的判定方法证明即可.
【详解】
解:(1)证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴∠COD=90°,
∴四边形OCED是矩形,
∴OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,
理由如下:
∵四边形ABCD是菱形,∠ABC=90°,
∴四边形ABCD是正方形,
∴DO=CO,
又∵四边形OCED是矩形,
∴四边形OCED是正方形.
本题考查了菱形的性质,矩形的判定与性质,正方形的判定和性质,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
25、(1)是;(2)是,理由详见解析;(3)49
【解析】
(1)根据题意,利用等腰三角形和三角形中位线定理得出,∠MPN=90°判定即可;
(2)由旋转和三角形中位线的性质得出,再由中位线定理进行等角转换,得出∠MPN=90°,即可判定;
(3)由题意,得出最大时,与的积最大,点在的延长线上,再由(1)(2)结论,得出与的积的最大值.
【详解】
(1)是;
∵,
∴DB=EC,∠ADE=∠AED=∠B=∠ACB
∴DE∥BC
∴∠EDC=∠DCB
∵点、、分别为、、的中点
∴PM∥EC,PN∥BD,
∴,∠DPM=∠DCE,∠PNC=∠DBC
∵∠DPN=∠PNC+∠DCB
∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°
∴线段与是“等垂线段”;
(2)由旋转知
∵,
∴≌()
∴,
利用三角形的中位线得,,
∴
由中位线定理可得,
∴,
∵
∴
∵
∴
∴
∴与为“等垂线段”;
(3)与的积的最大值为49;
由(1)(2)知,
∴最大时,与的积最大
∴点在的延长线上,如图所示:
∴
∴
∴.
此题主要考查等腰三角形以及三角形中位线的性质,熟练掌握,即可解题.
26、(1)(0,2);(2)(3,2)或(3,6)或(-3,-2).
【解析】
(1),令x=0,则y=2,即可求解;
(2)分AO是平行四边形的一条边、AO是平行四边形的对角线,两种情况分别求解即可.
【详解】
解:(1),令x=0,则y=2,
则点A(0,2),
故答案为(0,2);
(2)联立直线l1和l2的表达式并解得:x=3,
故点B(3,4),
①当AO是平行四边形的一条边时,
则点C(3,2)或(3,6);
②当AO是平行四边形的对角线时,
设点C的坐标为(a,b),点B(3,4),
BC的中点和AO的中点坐标,
由中点坐标公式:a+3=0,b+4=2,
解得:a=-3,b=-2,
故点C(-3,-2);
故点C坐标为:(3,2)或(3,6)或(-3,-2).
本题考查的是一次函数综合运用,涉及到平行四边形的性质,其中(2),要分类求解,避免遗漏.
题号
一
二
三
四
五
总分
得分
一户居民每月用电量x(度)
电费价格(元/度)
0.48
0.53
0.78
物体的质量(kg)
0
1
2
3
4
5
弹簧的长度(cm)
10
12.5
15
17.5
20
22.5
输入汉字(个)
132
133
134
135
136
137
甲组人数(人)
1
0
1
5
2
1
乙组人数(人)
0
1
4
1
2
2
组
众数
中位数
平均数()
方差()
甲组
乙组
134
134.5
135
1.8
学习积分频数分布表
组别
成绩分
频数
频率
第1组
5
第2组
第3组
15
30%
第4组
10
第5组
组
众数
中位数
平均数()
方差()
甲组
135
135
135
1.6
乙组
134
134.5
135
1.8
2024年哈尔滨市平房区九上数学开学统考模拟试题【含答案】: 这是一份2024年哈尔滨市平房区九上数学开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。