海南省儋州三中学2024年九上数学开学教学质量检测模拟试题【含答案】
展开这是一份海南省儋州三中学2024年九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数中,能构成直角三角形三边长的是( )
A.4、5、6B.5,12,23C.6,8,11D.1,1,
2、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为( )
A.10B.20
C.15D.25
3、(4分)正方形具有而菱形不一定具有的性质是 ( )
A.对角线相等B.对角线互相垂直平分
C.四条边相等D.对角线平分一组对角
4、(4分)下列四组线段中,可以构成直角三角形的是( )
A.4,5,6B.2,3,4C.1.5,2,2.5D.1,,3
5、(4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为( )
A.商贩A的单价大于商贩B的单价
B.商贩A的单价等于商贩B的单价
C.商版A的单价小于商贩B的单价
D.赔钱与商贩A、商贩B的单价无关
6、(4分)小明用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的函数关系式是( )
A.B.C.D.
7、(4分)已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为 ( )
A.y= x+2B.y= ﹣x+2C.y= x+2或y=﹣x+2D.y= - x+2或y = x-2
8、(4分)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于( )
A.20B.18C.16D.14
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是_____度.
10、(4分)如图,△ABC 和△BDE 都是等边三角形,A、B、D 三点共线.下列结论:①AB=CD;②BF=BG;③HB 平分∠AHD;④∠AHC=60°,⑤△BFG 是等边三角形.其中正确的有____________(只填序号).
11、(4分)计算:(﹣1)0+(﹣)﹣2=_____.
12、(4分)如图,中,,,点为边上一动点(不与点、重合),当为等腰三角形时,的度数是________.
13、(4分)如图,在直角三角形中,,、、分别是、、的中点,若=6厘米,则的长为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值,从-1、1、2中选择一个你喜欢的且使原式有意义的的值代入求值.
15、(8分)某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.
16、(8分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.
(1)求甲、乙两个工程队每天各修路多少千米?
(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?
17、(10分)已知:在中,对角线、交于点,过点的直线交于点,交于点.
求证:,.
18、(10分)某公司与销售人员签订了这样的工资合同:工资由两部分组成,一部分是基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售一件产品,奖励工资10元.设某销售员销售产品x件,他应得工资记为y元.
(1)求y与x的函数关系式.
(2)该销售员的工资为4100元,他这个月销售了多少件产品?
(3)要使每月工资超过4500元,该月的销售量应当超过多少件?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是 .
20、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为_____.
21、(4分)某个“清凉小屋”自动售货机出售三种饮料.三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶. 工作日期间,每天上货量是固定的,且能全部售出,其中,饮料的数量(单位:瓶)是饮料数量的2倍,饮料的数量(单位:瓶)是饮料数量的2倍. 某个周六,三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出. 但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元. 则这个“清凉小屋”自动售货机一个工作日的销售收入是__________元.
22、(4分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为_______.
23、(4分)如图,点的坐标为,则线段的长度为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在正方形中,点是边的中点,点是对角线上的动点,连接,过点作交正方形的边于点;
(1)当点在边上时,①判断与的数量关系;
②当时,判断点的位置;
(2)若正方形的边长为2,请直接写出点在边上时,的取值范围.
25、(10分)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.
解:x(x+2y)﹣(x+1)2+2x
=x2+2xy﹣x2+2x+1+2x 第一步
=2xy+4x+1 第二步
(1)小颖的化简过程从第 步开始出现错误;
(2)对此整式进行化简.
26、(12分)如图所示,在△ABC中,点D为BC边上的一点,AD=12,BD=16,AB=20,CD=1.
(1)试说明AD⊥BC.
(2)求AC的长及△ABC的面积.
(3)判断△ABC是否是直角三角形,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:A、42+52≠62,不能构成直角三角形,故不符合题意;
B、52+122≠232,不能构成直角三角形,故不符合题意;
C、62+82≠112,不能构成直角三角形,故不符合题意;
D、12+12=()2,能构成直角三角形,故符合题意.
故选D.
考点: 勾股定理的逆定理.
2、C
【解析】
根据平行四边形的性质求解即可.
【详解】
∵四边形ABCD是平行四边形
∴
∵AC+BD=20
∴
∴△AOB的周长
故答案为:C.
本题考查了三角形的周长问题,掌握平行四边形的性质是解题的关键.
3、A
【解析】
根据正方形和菱形的性质可以判断各个选项是否正确.
【详解】
解:正方形的对角线相等,菱形的对角线不相等,故A符合题意;
正方形和菱形的对角线都互相垂直平分,故B不符合题意;
正方形和菱形的四条边都相等,故C不符合题意;
正方形和菱形的对角线都平分一组对角,故D不符合题意,
故选:A.
本题考查正方形和菱形的性质,解答本题的关键是熟练掌握基本性质.
4、C
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;
B、22+32=13≠42,不可以构成直角三角形,故B选项错误;
C、1.52+22=6.25=2.52,可以构成直角三角形,故C选项正确;
D、,不可以构成直角三角形,故D选项错误.
故选:C.
本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
5、A
【解析】
设商贩A处西瓜的单价为a,商贩B处西瓜的单价为b,根据题意列出不等式进行求解即可得.
【详解】
设商贩A处西瓜的单价为a,商贩B处西瓜的单价为b,
则甲的利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0,
∴0.5b﹣0.5a<0,
∴a>b,
故选A.
本题考查了不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.
6、D
【解析】
剩余的钱=原有的钱-用去的钱,可列出函数关系式.
【详解】
剩余的钱Q(元)与买这种笔记本的本数x之间的关系为:Q=50−8x.
故选D
此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
7、C
【解析】
先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.
【详解】
∵一次函数y=kx+b(k≠0)图象过点(0,1),
∴b=1,
令y=0,则x=-,
∵函数图象与两坐标轴围成的三角形面积为1,
∴×1×|-|=1,即||=1,
解得:k=±1,
则函数的解析式是y=x+1或y=-x+1.
故选C.
8、A
【解析】
由已知条件易证AB=AE=AD-DE=BC-DE=4,结合AB=CD,AD=BC=6即可求得平行四边形ABCD的周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC=6,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE=AD-DE=6-2=4,
∴CD=AB=4,
∴平行四边形ABCD的周长=2×(4+6)=20.
故选A.
点睛:“由BE平分∠ABC结合AD∥BC得到∠ABE=∠CBE=∠AEB,从而证得AB=AE=AD-DE=BC-DE=4”是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据折线统计图,可得1到6月份的用电量的众数与中位数,相加求和即可.
【详解】
解:根据1到6月份用电量的折线统计图,可得150出现的次数最多,为2次,故用电量的众数为150(度);
1到6月份用电量按大小排列为:250,225,150,150,128,125,50,故中位数为150(度),
∴众数与中位数的和是:150+150=1(度).
故答案为1.
本题主要考查了中位数以及众数的定义,解决问题的关键是掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.解题时注意:一组数据中出现次数最多的数据叫做众数.
10、②③④⑤
【解析】
由题中条件可得△ABE≌△CBD,得出对应边、对应角相等,进而得出△BGD≌△BFE,△ABF≌△CGB,再由边角关系即可求解题中结论是否正确,进而可得出结论.
【详解】
∴AB=BC,BD=BE,∠ABC=∠DBE=60°,
∴∠ABE=∠CBD,
在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS),
∴AE=CD,∠BDC=∠AEB,
又∵∠DBG=∠FBE=60°,
∴在△BGD和△BFE中,
,
∴△BGD≌△BFE(ASA),
∴BG=BF,∠BFG=∠BGF=60°,
∴△BFG是等边三角形,
∴FG∥AD,
在△ABF和△CGB中,
,
∴△ABF≌△CGB(SAS),
∴∠BAF=∠BCG,
∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,
∴∠AHC=60°,
∴②③④⑤都正确.
故答案为②③④⑤.
本题主要考查了等边三角形的性质及全等三角形的判定及性质问题,能够熟练掌握.
11、5
【解析】
按顺序分别进行0次幂运算、负指数幂运算,然后再进行加法运算即可.
【详解】
(﹣1)0+(﹣)﹣2
=1+4
=5,
故答案为:5.
本题考查了实数的运算,涉及了0指数幂、负整数指数幂,熟练掌握各运算的运算法则是解题的关键.
12、或
【解析】
根据AB=AC,∠A=40°,得到∠ABC=∠C=70°,然后分当CD=CB时和当BD=BC时两种情况求得∠ABD的度数即可.
【详解】
解:∵AB=AC,∠A=40°,
∴∠ABC=∠C=70°,
当CD=CB时,
∠CBD=∠CDB=(180°-70°) ÷2=55°,
此时∠ABD=70°-55°=15°;
当BD=BC时,
∠BDC=∠BCD=70°,
∴∠DBC=180°-70°-70°=40°,
∴∠ABD=70°-40°=30°,
故答案为:15°或30°.
本题考查了等腰三角形的性质,解题的关键是能够分类讨论,难度不是很大,是常考的题目之一.
13、6厘米
【解析】
根据直角三角形斜边中线等于斜边一半算出AB,再根据中位线的性质求出EF即可.
【详解】
∵∠BCA=90°,且D是AB的中点,CD=6,
∴AB=2CD=12,
∵E、F是AC、BC的中点,
∴EF=.
故答案为:6厘米
本题考查直角三角形中线的性质、中位线的性质,关键在于熟练掌握相关基础知识.
三、解答题(本大题共5个小题,共48分)
14、4
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=
=x+2,
由分式有意义的条件可知:x=2,
∴原式=4,
本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
15、1元
【解析】
首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.
【详解】
解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:,解方程,得x=1.
经检验:x=1是原方程的根,且符合题意.
答:跳绳的单价是1元.
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
16、(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.
【解析】
(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;
(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.
【详解】
(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,
根据题意,可列方程:,解得x=1.5,
经检验x=1.5是原方程的解,且x﹣0.5=1,
答:甲每天修路1.5千米,则乙每天修路1千米;
(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,
∴乙需要修路(天),
由题意可得0.5a+0.4(15﹣1.5a)≤5.2,
解得a≥8,
答:甲工程队至少修路8天.
考点:1.分式方程的应用;2.一元一次不等式的应用.
17、证明见解析.
【解析】
首先根据平行四边形的性质可得AB∥CD,OA=OC.根据平行线的性质可得∠EAO=∠FCO,进而可根据ASA定理证明△AEO≌△CFO,再根据全等三角形的性质可得OE=OF,AE=CF.
【详解】
证明:∵ 四边形ABCD为平行四边形,且对角线AC和BD交于点O,
∴,,
∴∠EAO=∠FCO,
∵∠AOE=∠COF,
∴ △AOE△COF(ASA),
∴ OE=OF,AE=CF.
本题考查了平行四边形的性质和全等三角形的判定,掌握全等三角形判定的方法是本题解题的关键.
18、 (1) y=10x+3000(x≥0,且x为整数);(2) 110件产品;(3) 超过150件.
【解析】
分析:(1).根据营销人员的工资由两部分组成,一部分为基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,得出y与x的函数关系式即可;(2).利用某营销员某月工资为4100元,可求出他销售了多少件产品;(3).根据月工资超过4500元,求不等式解集即可.
此题考查了一次函数的综合应用;关键是读懂题意得出y与x之间的函数关系式,进而利用等量关系分别求解;一次函数及其图像是初中代数中比较重要的内容.
详解:∵销售人员的工资由两部分组成,一部分为基本工资,每人每月3000元;
另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,
设营销员李亮月销售产品x件,他应得的工资为y元,
∴y=10x+3000(,且x为整数);
(2)∵若该销售员的工资为4100元,
则10x+3000=4100,解之得:x=110,
∴该销售员的工资为4100元,他这个月销售了110件产品;
(3)根据题意可得:解得,
∴要使每月工资超过4500元,该月的销售量应当超过150件.
点睛:本题考查了一次函数的性质,熟记性质,会灵活运用性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题分析:连接DB,BD与AC相交于点M,
∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.
∵∠DAB=60°,∴△ADB是等边三角形.
∴DB=AD=1,∴BM=
∴AM=
∴AC=.
同理可得AE=AC=()2,AG=AE=()3,…
按此规律所作的第n个菱形的边长为()n-1
20、1
【解析】
试题解析:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,
∴CD2=AD•BD=8×2,
则CD=1.
21、760
【解析】
设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,周六销售收入与工作日期间一天销售收入的差为:29.1x-19x=10.1x元,由于发生一起错单,收入的差为403元,因此,403加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在A、B饮料上(A、B一瓶的差价为1元),且是消费者付A饮料的钱,取走的是B饮料;于是可以列方程求出C的数量,进而求出工作日期间一天的销售收入.
【详解】
设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,
工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,
周六销售收入与工作日期间一天销售收入的差为:29.1x-19x=10.1x元,
由于发生一起错单,收入的差为403元,因此,403加减一瓶饮料的差价一定是10.1的整数倍,
所以这起错单发生在A、B饮料上(A、B一瓶的差价为1元),且是消费者付A饮料的钱,取走的是B饮料;
于是有:10.1x-(3-2)=403
解得:x=40.
工作日期间一天的销售收入为:19×40=760元.
故答案为:760.
考查销售过程中的数量之间的关系,以及方程的整数解得问题,通过探索、推理、验证得到答案.
22、﹣1≤m≤1
【解析】
此题涉及的知识点是根据平面直角坐标系建立不等式,先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.
【详解】
解:∵点M在直线y=﹣x上,
∴M(m,﹣m),
∵MN⊥x轴,且点N在直线y=x上,
∴N(m,m),
∴MN=|﹣m﹣m|=|2m|,
∵MN≤8,
∴|2m|≤8,
∴﹣1≤m≤1,
故答案为﹣1≤m≤1.
此题重点考查学生对于平面直角坐标系的性质,根据平面直角坐标系建立不等式,熟练掌握不等式计算方法是解题的关键.
23、
【解析】
根据勾股定理计算即可.
【详解】
解:∵点A坐标为(2,2),
∴AO=,
故答案为:.
本题考查了勾股定理的运用和点到坐标轴的距离:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
二、解答题(本大题共3个小题,共30分)
24、(1)①,理由详见解析;②点位于正方形两条对角线的交点处(或中点出),理由详见解析;(2)
【解析】
(1) ①过点作于点,于点,通过证可得ME=MF;
②点位于正方形两条对角线的交点处时,,可得;
(2)当点F分别在BC的中点处和端点处时,可得M的位置,进而得出AM的取值范围。
【详解】
解:(1)。理由是:
过点作于点,于点
在正方形中,
矩形为正方形
又
②点位于正方形两条对角线的交点处(或中点处)
如图,是的中位线,
又,
此时,是中点,
且,
,
(2)当点F在BC中点时,M在AC,BD交点处时,此时AM最小, AM=AC= ; 当点F与点C重合时,M在AC,BD交点到点C的中点处,此时AM最大, AM= 。
故答案为:
本题是运动型几何综合题,考查了全等三角形、正方形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)添加恰当的辅助线是解题的关键。
25、(1)一;(2)2xy﹣1.
【解析】
(1)注意去括号的法则;
(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.
【详解】
解:(1)括号前面是负号,去掉括号应变号,故第一步出错,
故答案为一;
(2)x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x =2xy﹣1.
26、(1)见解析;(2)15,150;(3)是
【解析】
试题分析:(1)根据勾股定理的逆定理即可判断;
(2)先根据勾股定理求得斜边的长,再根据直角三角形的面积公式即可求得结果;
(3)根据勾股定理的逆定理即可判断.
(1)
∴是直角三角形
∴即;
(2)∵,且点为边上的一点
∴
∴由勾股定理得:
∴;
(3)是直角三角形
,
∴是直角三角形.
考点:本题考查的是勾股定理,直角三角形的面积公式,勾股定理的逆定理
点评:解答本题的根据是熟练掌握勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份海南省儋州三中学2025届数学九上开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届海南省儋州市洋浦中学九上数学开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年福建泉州安溪恒兴中学九上数学开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。