内蒙古鄂尔多斯市东胜区2024年数学九上开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知四边形ABCD中,AB∥CD,添加下列条件仍不能判断四边形ABCD是平行四边形的是( )
A.AB=CDB.AD=BCC.AD∥BCD.∠A+∠B=180°
2、(4分)下列等式从左到右的变形,属于因式分解的是( )
A.B.
C.D.
3、(4分)据有关实验测定,当室温与人体正常体温(37℃)的比值为黄金比时,人体感到最舒适,这个室温约(精确到1℃)( )
A.21℃B.22℃C.23℃D.24℃
4、(4分)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( ).
A.甲B.乙C.丙D.丁
5、(4分)一组数据5,2,3,5,4,5的众数是( )
A.3B.4C.5D.8
6、(4分)某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是( )
A.36B.45C.48D.50
7、(4分)如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )
A.2B.
C.D.
8、(4分)下面四个式子中,分式为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)正比例函数图象经过,则这个正比例函数的解析式是_________.
10、(4分)将代入反比例函数中,所得函数值记为,又将代入函数中,所得函数值记为,再将代入函数中,所得函数值记为,如此继续下去,则________.
11、(4分)已知反比例函数,若,且,则的取值范围是_____.
12、(4分)对任意的两实数,用表示其中较小的数,如,则方程的解是__________.
13、(4分)如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,E、F分别平行四边形ABCD对角线BD上的点,且BE=DF.
求证:∠DAF=∠BCE.
15、(8分)某校实行学案式教学,需印制若干份教学学案.印刷厂有,甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.
(1)填空:甲种收费方式的函数关系式是__________,乙种收费方式的函数关系式是__________.
(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算.
16、(8分)2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下
收集数据
甲、乙两班被调查者读课外书数量(单位:本)统计如下:
甲:1,9,7,4,2,3,3,2,7,2
乙:2,6,6,3,1,6,5,2,5,4
整理、描述数据绘制统计表如下,请补全下表:
分析数据、推断结论
(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;
(2)你认为哪个班同学寒假读书情况更好,写出理由.
17、(10分)如图抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)求S△ABC的面积.
18、(10分)如图,在中, 是的中点,连接并延长交的延长线于点.
(1)求证:;
(2)若,,求的度数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.
20、(4分)在菱形ABCD中,M是BC边上的点(不与B,C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为,,则关于的函数解析式是_______________________________.
21、(4分)20190=__________.
22、(4分)如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为________.
23、(4分)如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=__.
二、解答题(本大题共3个小题,共30分)
24、(8分)申思同学最近在网上看到如下信息:
总书记明确指示,要重点打造北京非首都功能疏解集中承载地,在河北适合地段规划建设一座以新发展理念引领的现代新型城区.雄安新区不同于一般意义上的新区,其定位是重点承接北京疏解出的与去全国政治中心、文化中心、国际交往中心、科技创新中心无关的城市功能,包括行政事业单位、总部企业、金融机构、高等院校、科研院所等.右图是北京、天津、保定和雄安新区的大致交通图,其中保定、天津和雄安新区可近似看作在一条直线上.申思同学想根据图中信息求出北京和保定之间的大致距离.
他先画出如图示意图,其中AC=AB=BC=100,点C在线段BD上,他把CD近似当作40,来求AD的长.
请帮申思同学解决这个问题.
25、(10分)某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:
成绩统计分析表
(1)张明第2次的成绩为__________秒;
(2)请补充完整上面的成绩统计分析表;
(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁? 请说明理由.
26、(12分)如图,在平行四边形ABCD中,AE、AF是平行四边形的高,,,,DE交AF于G.
(1)求线段DF的长;
(2)求证:是等边三角形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
【详解】
解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.
故选B.
此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
2、B
【解析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、不是因式分解,故本选项不符合题意;
B、是因式分解,故本选项符合题意;
C、不是因式分解,故本选项不符合题意;
D、不是因式分解,故本选项不符合题意;
故选:B.
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.
3、C
【解析】
根据黄金比的值可知,人体感到最舒适的温度应为37℃的0.1倍.
【详解】
解:根据黄金比的值得:37×0.1≈23℃.
故选C.
本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.1.
4、C
【解析】
试题分析:丙的平均数==9,丙的方差= [1+1+1=1]=0.4,
乙的平均数==8.2,
由题意可知,丙的成绩最好,
故选C.
考点:1、方差;2、折线统计图;3、加权平均数
5、C
【解析】
根据众数的定义:一组数据中出现次数最多的数据即可得出答案.
【详解】
因为5出现3次,最多,所以,众数为3,选C。
此题考查众数,解题关键在于掌握其定义
6、D
【解析】
根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.
【详解】
解:在这组数据50、45、36、48、50中,
50出现了2次,出现的次数最多,
则这组数据的众数是50,
故选D.
考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.
7、D
【解析】
将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.
【详解】
将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:
则阴影面积=
=
=
故选:D
本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.
8、B
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
A.的分母中不含有字母,因此它是整式,而不是分式,故本选项错误;
B.分母中含有字母,因此它们是分式,故本选项正确;
C.是整式,而不是分式,故本选项错误;
D.的分母中不含有字母,因此它们是整式,而不是分式.故本选项错误.
故选B.
本题考查了分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设解析式为y=kx,再把(3,−6)代入函数解析式即可算出k的值,进而得到解析式.
【详解】
解:设这个正比例函数的解析式为y=kx(k≠0),
∵正比例函数的图象经过点(3,−6),
∴−6=3k,
解得k=−2,
∴y=−2x.
故答案是:y=−2x.
此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.
10、2
【解析】
可依次求出y的值,寻找y值的变化规律,根据规律确定的值.
【详解】
解:将代入反比例函数中得;
将代入函数得;
将代入函数得;
将代入函数得
由以上计算可知:y的值每三次重复一下
故y的值在重复670次后又计算了2次,所以
故答案为:2
本题属于反比例函数的求值规律题,找准函数值的变化规律是解题的关键.
11、或
【解析】
利用反比例函数增减性分析得出答案.
【详解】
解:且,
时,,
在第三象限内,随的增大而减小,
;
当时,,在第一象限内,随的增大而减小,
则,
故的取值范围是:或.
故答案为:或.
此题主要考查了反比例函数图象上点的坐标特征,正确掌握反比例函数增减性是解题关键.
12、,
【解析】
此题根据题意可以确定max(2,2x-1),然后即可得到一个一元二次方程,解此方程即可求出方程的解.
【详解】
①当2x-1>2时,∵max(2,2x-1)=2,
∴xmax(2,2x-1)=2x,
∴2x=x+1
解得,x=1,此时2x-1>2不成立;
②当2x-1<2时,∵max(2,2x-1)=2x-1,
∴xmax(2,2x-1)=2x2-x,
∴2x2-x =x+1
解得,,.
故答案为:,.
本题立意新颖,借助新运算,实际考查解一元二次方程的解法.
13、①②④
【解析】
根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠B=∠D,
∵根据折叠可得∠D=∠NMA,
∴∠B=∠NMA,
∴MN∥BC;①正确;
∵四边形ABCD是平行四边形,
∴DN∥AM,AD∥BC,
∵MN∥BC,
∴AD∥MN,
∴四边形AMND是平行四边形,
根据折叠可得AM=DA,
∴四边形AMND为菱形,
∴MN=AM;②④正确;
没有条件证出∠B=90°,④错误;
故答案为①②④.
本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、详见解析
【解析】
只要证明△ADF≌△CBE即可解决问题.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADB=∠CBD,
∵DF=BE,
∴△ADF≌△CBE,
∴∠DAF=∠BCE.
本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
15、(3)y=3.33x+6;y=3.33x(3)当333≤x<333时,选择乙种印刷方式较合算;当x=333时,选择甲、乙两种印刷方式都可以;当333
(3)设甲种收费的函数关系式y3=kx+b,乙种收费的函数关系式是y3=k3x,直接运用待定系数法就可以求出结论;
(3)由(3)的解析式分三种情况进行讨论,当y3>y3时,当y3=y3时,当y3<y3时分别求出x的取值范围就可以得出选择方式.
【详解】
(3)设甲种收费的函数关系式y3=kx+b,乙种收费的函数关系式是y3=k3x,由题意,得
,33=333k3,
解得:,k3=3.33,
∴y3=3.3x+6(x≥3),y3=3.33x(x≥3);
(3)由题意,得
当y3>y3时,3.3x+6>3.33x,得x<333;
当y3=y3时,3.3x+6=3.33x,得x=333;
当y3<y3时,3.3x+6<3.33x,得x>333;
∴当333≤x<333时,选择乙种方式合算;
当x=333时,甲、乙两种方式一样合算;
当333<x≤453时,选择甲种方式合算.
答:印制333~333(含333)份学案,选择乙种印刷方式较合算,印制333份学案,甲、乙两种印刷方式都一样合算,印制333~453(含453)份学案,选择甲种印刷方式较合算.
3.待定系数法求一次函数解析式;3.一次函数的应用.
16、统计图补全见解析 (1)12 (2)乙班,理由见解析
【解析】
根据平均数、众数、中位数、方差的概念填表
(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解;
(2)根据方差的性质进行判断即可.
【详解】
甲组的众数是2,乙组中位数是
乙组的平均数:
甲组的方差:
补全统计表如下:
(1)
(人)
故估计读6本书的同学大概有12人;
(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学.
本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.
17、 (1) y=x2+2x﹣3;(2)1.
【解析】
(1)先根据直线y=x﹣3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值;
(2)根据(1)中抛物线的解析式可求出C点的坐标,然后根据三角形的面积公式即可求出△ABC的面积.
【详解】
(1)当x=0时,y=x﹣3=﹣3,则B(0,﹣3);
当y=0时,x﹣3=0,解得x=3,则A(3,0),
把A(3,0),B(0,﹣3)代入y=x2+bx﹣c得,解得,
∴抛物线的解析式为y=x2+2x﹣3;
(2)当y=0时,x2+2x﹣3=0,解得x1=﹣1,x2=3,则C(﹣1,0),
∴S△ABC=×(3+1)×3=1.
本题主要考查了一次函数与坐标轴的交点,二次函数解析式的确定、三角形面积的求法等知识点.考查了学生数形结合的数学思想方法.
18、(1)详见解析;(2)35°.
【解析】
(1)欲证明AE=FE,只要证明△ADE≌△FCE(AAS)即可.
(2)根据∠DAE=∠BAD-∠FAB,只要求出∠BAD,∠FAB即可.
【详解】
解:(1)证明:∵四边形是平行四边形,是的中点,
∴,,
∴,, ,
∴≌(),
∴.
(2)∵四边形是平行四边形,
∴,由(1)的结论知,
∴,
∵,
∴,
∴
∴,
∴∠BAD=180°−∠B=70°,
∴∠DAE=∠BAD−∠FAB=70°−35°=35°.
此题考查平行四边形的性质,全等三角形的判定与性质,解题关键在于证明△ADE≌△FCE.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x<4
【解析】
观察图象,函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值即为不等式kx-3>2x+b的解集.
【详解】
由图象可得,当函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值为x<4,
∴不等式kx-3>2x+b的解集是x<4.
故答案为:x<4.
本题主要考查一次函数和一元一次不等式,解题的关键是利用数形结合思想.
20、
【解析】
首先根据菱形的性质得出∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC,进而得出∠BAM,然后根据对称性得出∠AND=∠AND==180°-,分情况求解即可.
【详解】
∵菱形ABCD中,AB=AM,
∴∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC
∴∠ABC+∠BAD=180°,
∴∠BAD=180°-
∵AB=AM,
∴∠AMB=∠ABC=
∴∠BAM=180°-∠ABC-∠AMB=180°-2
连接BN、AN,如图:
∵点B关于直线AM对称的点是N,
∴AN=AB,∠MAN=∠BAM=180°-2,即∠BAN=2∠BAM=360°-4
∴AN=AD,∠DAN=∠BAD-∠BAN=180°--(360°-4)=3-180°
∴∠AND=∠AND==180°-
∵M是BC边上的点(不与B,C两点重合),
∴
∴
若,即时,
∠CDN=∠ADC-∠AND=,即;
若即时,
∠CDN=∠AND-∠ADC =,即
∴关于的函数解析式是
故答案为:.
此题主要考查菱形的性质与一次函数的综合运用,熟练掌握,即可解题.
21、1
【解析】
任何不为零的数的零次方都为1.
【详解】
任何不为零的数的零次方都等于1.
=1
本题考查零指数幂,熟练掌握计算法则是解题关键.
22、1
【解析】
试题分析:根据勾股定理得到AE==1,由平行线等分线段定理得到AE=BE=1,根据平移的性质即可得到结论.∵∠C=90°,AD=DC=4,DE=3, ∴AE==1, ∵DE∥BC, ∴AE=BE=1,
∴当点D落在BC上时,平移的距离为BE=1.
考点:平移的性质
23、1
【解析】
根据三角形的中位线定理得到PQ=BC,得到相似比为,再根据相似三角形面积之比等于相似比的平方,可得到结果.
【详解】
解:∵P,Q分别为AB,AC的中点,
∴PQ∥BC,PQ=BC,
∴△APQ∽△ABC,
∴ =()2=,
∵S△APQ=1,
∴S△ABC=4,
∴S四边形PBCQ=S△ABC﹣S△APQ=1,
故答案为1.
本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
试题分析:作,构造直角三角形,先求出DE和AE的长度,再根据勾股定理求得AD的长度.
试题解析:
作.
∵,
∴为等边三角形.
∵,
∴,,
∴,
∴.
∵中,
.
∵,
∴.
∵中,
,
.
∵,
∴.
25、(1)13.4;(2)13.3 ,13.3;(3)选择张明
【解析】
根据折线统计图写出答案即可
根据已知条件求得中位数及平均线即可,中数是按顺序排列的一组数据中居于中间位置的数,平均数是指在一组数据中所有数据之和再除以数据的个数.
根据平均线一样,而张明的方差较稳定,所以选择张明.
【详解】
(1)根据折线统计图写出答案即可,即13.4;
(2)中数是按顺序排列的一组数据中居于中间位置的数,即是13.3 ,平均数是指在一组数据中所有数据之和再除以数据的个数.即(13.2+13.4+13.1+13.5+13.3)5=13.3;
(3)选择张明参加比赛.理由如下:
因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明的成绩较稳定,所以应该选择张明参加比赛.
本题考查平均数、中位数和方差,熟练掌握计算法则和它们的性质是解题关键.
26、(1);(2)是等边三角形,见解析.
【解析】
(1)根据AE、AF是平行四边形ABCD的 高,得 ,,又,,所以有﹐,则求出CD,再根据,则可求出DF的长;(2)根据三角形内角和定理求出,求出,再求出,则可证明.
【详解】
解:(1)∵在平行四边形ABCD中AE、AF是高,
∴,,
∴,,
∵中,,
∴﹐,
∵四边形ABCD是平行四边形,,,
∴,,
∵,,∴,
(2)证明:∵中,,
∴,∴,
∵四边形ABCD是平行四边形,,
∴,,∴
∴,∴,
∵由(1)知∴
∵,,∴,
∴,
∴是等边三角形.
本题考查了平行四边形的性质、三角形内角和定理、等边三角形的判定等知识点,熟练掌握性质及定理是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
平均数
9
8
方差
1
1
班级
平均数
众数
中位数
方差
甲
4
3
乙
6
3.2
班级
平均数
众数
中位数
方差
甲
4
2
3
6.6
乙
4
6
4.5
3.2
2025届内蒙古鄂尔多斯市河南中学九上数学开学质量检测试题【含答案】: 这是一份2025届内蒙古鄂尔多斯市河南中学九上数学开学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届内蒙古鄂尔多斯市东胜区数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2025届内蒙古鄂尔多斯市东胜区数学九年级第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届内蒙古鄂尔多斯市达拉特旗第十二中学九上数学开学达标检测模拟试题【含答案】: 这是一份2025届内蒙古鄂尔多斯市达拉特旗第十二中学九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。