搜索
    上传资料 赚现金
    英语朗读宝

    2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】

    2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】第1页
    2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】第2页
    2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】

    展开

    这是一份2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)用科学记数法表示,结果为( )
    A.B.C.D.
    2、(4分)若分式的值为0,则( )
    A.B.C.D.
    3、(4分)生物学家发现了一种病毒,其长度约为,将数据0. 00000032用科学记数法表示正确的是( )
    A.B.C.D.
    4、(4分)矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为( )
    A.10cm2B.15cm2C.12cm2D.10cm2或15cm2
    5、(4分)点(1,m),(2,n)都在函数y=﹣2x+1的图象上,则m、n的大小关系是( )
    A.m=n B.m<n C.m>n D.不确定
    6、(4分)若分式有意义,则的值是( )
    A.B.C.D.
    7、(4分)若,则下列不等式成立的是( )
    A.B.C.D.
    8、(4分)数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是( ).
    A.2B.3C.4D.6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)命题“全等三角形的对应角相等”的逆命题是____________________________这个逆命题是______(填“真”或“假”)
    10、(4分)点A(-2,3)关于x轴对称的点B的坐标是_____
    11、(4分)如果直线 y=-2x+k 与两坐标轴所围成的三角形面积是 9,则 k的值为_____.
    12、(4分)在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______
    13、(4分)对于一个函数,如果它的自变量 x 与函数值 y 满足:当−1≤x≤1 时,−1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=−x 均是“闭函数”. 已知 y  ax2 bx  c(a0) 是“闭函数”,且抛物线经过点 A(1,−1)和点 B(−1,1),则 a 的取值范围是______________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其他任何区别.现将3个小球放入编号为①②③的三个盘子里,规定每个盒子里放一个,且只能放一个小球
    (1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能情况;
    (2)求红球恰好被放入②号盒子的概率.
    15、(8分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点C与直线AD交于点A(1,2),点D的坐标为(0,1)
    (1)求直线AD的解析式;
    (2)直线AD与x轴交于点B,请判断△ABC的形状;
    (3)在直线AD上是否存在一点E,使得4S△BOD=S△ACE,若存在求出点E的坐标,若不存在说明理由.
    16、(8分)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.
    (1)如图1所示,求证: 且
    (2)将△COD绕点O旋转到图2、图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论
    17、(10分)某商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1 200元,那每件降价多少元?
    18、(10分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性
    笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,
    水性笔若干支(不少于4支).
    (1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
    (2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
    (3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E为AD的中点,则OE的长为___.
    20、(4分)李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是________环.
    21、(4分)如图,点D是Rt△ABC斜边AB的中点,AC=1,CD=1.5,那么BC=_____.
    22、(4分)某校四个绿化小组一天植树棵数分别是10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是_____.
    23、(4分)直角三角形的两边为3和4,则该三角形的第三边为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,在中,,cm,cm.直线 从点出发,以2 cm/s的速度向点方向运动,并始终与平行,与线段交于点.同时,点从点出发,以1cm/s的速度沿向点运动,设运动时间为(s) () .
    (1)当为何值时,四边形是矩形?
    (2)当面积是的面积的5倍时,求出的值;
    25、(10分)如图,在中,,平分,垂直平分于点,若,求的长.
    26、(12分)小红同学经常要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉开5m后,发现这时绳子的下端正好距地面1m,学校旗杆的高度是( )
    A.21mB.13mC.10mD.8m
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    ﹣0.000 001 4=﹣1.4×10﹣1.
    故选B.
    本题考查了用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    2、B
    【解析】
    根据分式的值为0的条件,列式求解即可.分式的值为0的条件是:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    解:由题意得:
    解得:x=1
    故答案为B
    本题考查了分式的值为0的条件,即:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
    3、B
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    0.00000032=3.2×10-1.
    故选:B.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    4、D
    【解析】
    根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AB=CD,AD=BC,AD∥BC,
    ∴∠AEB=∠CBE,
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE,
    ∴∠AEB=∠ABE,
    ∴AB=AE,
    当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.
    ∴矩形ABCD的面积是:1×5=10cm1;
    当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,
    ∴矩形ABCD的面积是:5×3=15cm1.
    故矩形的面积是:10cm1或15cm1.
    故选:D.
    本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.
    5、C
    【解析】
    一次函数y=kx+b(k≠0)的性质,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,根据此性质进行求解即可得.
    【详解】
    ∵函数y=-2x+1中,k=-1<0,
    ∴y随x的增大而减小,
    又∵1<2,
    ∴m>n,
    故选C.
    本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
    6、D
    【解析】
    根据分式有意义的条件可得x+1≠0求解即可.
    【详解】
    解:当x+1≠0时分式有意义
    解得:
    故选D.
    此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
    7、B
    【解析】
    总的来说,用不等号(,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A错误,其余选型根据不等式的性质判定即可.
    【详解】
    A: a>b,则a-5>b-5,故A错误;
    B:a>b, -a<-b,则-2a<-2b, B选项正确.
    C:a>b, a+3>b+3,则>,则C选项错误.
    D:若0>a>b时,a2<b2,则D选项错误.
    故选B
    本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.
    8、A
    【解析】
    由众数的定义,求出其中出现次数最多的数即可.
    【详解】
    ∵数据1,1,6,1,3,4,3,1,6,5,4,5,4中,1出现了4次,出现的次数最多,
    ∴众数是1.
    故选:A.
    考查了众数,用到的知识点是众数的定义,关键是找出出现次数最多的数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、对应角相等的三角形是全等三角形 假
    【解析】
    把原命题的题设和结论作为新命题的结论和题设就得逆命题.
    【详解】
    命题“全等三角形的对应角相等”的逆命题是“对应角相等的三角形是全等三角形”;对应角相等的三角形不一定是全等三角形,这个逆命题是假命题.
    故答案为(1). 对应角相等的三角形是全等三角形 (2). 假
    本题考核知识点:互逆命题.解题关键点:注意命题的形式.
    10、(-2,-3).
    【解析】
    根据在平面直角坐标系中,关于x轴对称的两个点的横坐标相同,纵坐标相反即可得出答案.
    解:点A(-2,3)关于x轴对称的点B的坐标是(-2,-3).
    故答案为(-2,-3).
    11、±1.
    【解析】
    试题分析:当x=0时,y=k;当y=0时,,∴直线与两坐标轴的交点坐标为A(0,k),B(,0),∴S△AOB=,∴k=±1.故答案为±1.
    考点:一次函数综合题.
    12、8或
    【解析】
    分CE:BE=1:3和BE:CE=1:3两种情况分别讨论.
    【详解】
    解:(1)当CE:BE=1:3时,如图:
    ∵四边形ABCD是矩形,
    ∴∠BAD=∠B=90º,
    ∴∠BAE=∠BEA=45º,
    ∴BE=AB=2,
    ∵CE:BE=1:3,
    ∴CE=,
    ∴BC=2+=;
    (2)当BE:CE=1:3时,如图:
    同(1)可求出BE=2,
    ∵BE:CE=1:3,
    ∴CE=6,
    ∴BC=2+6=8.
    故答案为8或.
    本题考查了矩形的性质.
    13、或
    【解析】
    分析:分别把点A、B代入函数的解析式,求出a、b、c的关系,然后根据抛物线的对称轴x=,然后结合图像判断即可.
    详解:∵y  ax2 bx  c(a0)经过点 A(1,−1)和点 B(−1,1)
    ∴a+b+c=-1,a-b+c=1
    ∴a+c=0,b=-1
    则抛物线为:y  ax2 bx –a
    ∴对称轴为x=
    ①当a<0时,抛物线开口向下,且x=<0,如图可知,当≤-1时符合题意,所以;当-1<<0时,图像不符合-1≤y≤1的要求,舍去;
    ②当a>0时,抛物线的开口向上,且x=>0,由图可知≥1时符合题意,∴0<a≤;当0<<1时,图像不符合-1≤y≤1的要求,舍去.
    综上所述,a的取值范围是:或.
    故答案为或.
    点睛:本题考查的是二次函数的性质,在解答此题时要注意进行分类讨论,不要漏解.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)
    【解析】
    列举出符合题意的各种情况的个数,再根据概率公式解答即可.
    【详解】
    (1)
    (2)P(红球恰好被放入②号盒子)=
    本题考查列表法与树状图法,列举出符合题意的各种情况的个数是解题关键.
    15、 (1)y=x+1;(2)△ABC是等腰直角三角形;(3)存在,点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.
    【解析】
    (1)利用待定系数法,即可得到直线AD的解析式;
    (2)依据点的坐标求得AB=2,AC=2,BC=4,即可得到AB2+AC2=16=BC2,进而得出△ABC是等腰直角三角形;
    (3)依据4S△BOD=S△ACE,即可得到AE=,分两种情况进行讨论:①点E在直线AC的右侧,②点E在直线AC的左侧,分别依据AD=AE=,即可得到点E的坐标.
    【详解】
    解:(1)直线AD的解析式为y=kx+b,
    ∵直线AD经过点A(1,2),点D(0,1),
    ∴,
    解得,
    ∴直线AD的解析式为y=x+1;
    (2)∵y=x+1中,当y=0时,x=﹣1;y=﹣x+3中,当y=0时,x=3,
    ∴直线AD与x轴交于B(﹣1,0),直线AC与x轴交于C(3,0),
    ∵点A(1,2),
    ∴AB=2,AC=2,BC=4,
    ∵AB2+AC2=16=BC2,
    ∴∠BAC=90°,
    ∴△ABC是等腰直角三角形;
    (3)存在,
    AC=2,S△BOD=×1×1=,
    ∵△ABC是等腰直角三角形,
    ∴∠CAE=90°,
    ∵S△ACE=AE×AC,4S△BOD=S△ACE,
    ∴4×=×AE×2,
    解得AE=,
    ①如图,当点E在直线AC的右侧时,过E作EF⊥y轴于F,
    ∵AD=AE=,∠EDF=45°,
    ∴EF=DF=2,OF=2+1=3,
    ∴E(2,3);
    ②当点E在直线AC的左侧时,
    ∵AD=AE=,
    ∴点E与点D重合,即E(0,1),
    综上所述,当点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.
    本题主要考查了两直线相交问题,待定系数法求一次函数解析式的运用,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
    16、(1)详见解析;(2)详见解析.
    【解析】
    (1)首先证明△AOD≌△BOC(SAS),利用全等三角形的性质得到BC=AD,再利用直角三角形斜边中线的性质即可得到OH=BC=AD,然后通过全等三角形对应角相等以及直角三角形两锐角互余证明OH⊥AD;
    (2)如图2中,延长OH到E,使得HE=OH,连接BE,通过证明△BEO≌△ODA,可得OH=OE=AD以及∠DAO+∠AOH=∠EOB+∠AOH=90°,问题得证;如图3中,延长OH到E,使得HE=OH,连接BE,延长EO交AD于G,同理可证OH=OE=AD,∠DAO+∠AOG=∠EOB+∠AOG=90°.
    【详解】
    (1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,
    ∴OC=OD,OA=OB,
    在△AOD与△BOC中,
    ∵OA=OB,∠AOD=∠BOC,OD=OC,
    ∴△AOD≌△BOC(SAS),
    ∴BC=AD
    ∵H是BC中点,
    ∴OH=BC=AD.
    ∵△AOD≌△BOC
    ∴∠ADO=∠BCO,∠OAD=∠OBC,
    ∵点H为线段BC的中点,
    ∴∠OBH=∠HOB=∠OAD,
    又∵∠OAD+∠ADO=90°,
    ∴∠ADO+∠BOH=90°,
    ∴OH⊥AD;
    (2)解:结论:OH⊥AD,OH=AD
    证明:如图2中,延长OH到E,使得HE=OH,连接BE,
    易证△BEO≌△ODA,
    ∴OE=AD,∴OH=OE=AD.
    由△BEO≌△ODA,知∠EOB=∠DAO,
    ∴∠DAO+∠AOH=∠EOB+∠AOH=90°,
    ∴OH⊥AD.
    如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.
    易证△BEO≌△ODA,
    ∴OE=AD,∴OH=OE=AD.
    由△BEO≌△ODA,知∠EOB=∠DAO,
    ∴∠DAO+∠AOG=∠EOB+∠AOG=90°,
    ∴∠AGO=90°,
    ∴OH⊥AD.
    本题考查了旋转变换,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    17、每件童装应降价1元.
    【解析】
    设每件童装应降价x元,原来平均每天可售出1件,每件盈利40元,后来每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利110元,由此即可列出方程(40-x)(1+2x)=110,解方程就可以求出应降价多少元.
    【详解】
    如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.
    设每件童装应降价x元,
    依题意得(40-x)(1+2x)=110,
    整理得x2-30x+10=0,
    解之得x1=10,x2=1,
    因要减少库存,故x=1.
    答:每件童装应降价1元.
    首先找到关键描述语,找到等量关系,然后准确的列出方程是解决问题的关键.最后要判断所求的解是否符合题意,舍去不合题意的解.
    18、(1)见解析;(2)见解析;(3)见解析
    【解析】
    解:
    (1)设按优惠方法①购买需用y1元,按优惠方法②购买需用y2元
    y1=(x−4)×5+20×4=5x+60,
    y2=(5x+20×4)×0.9=4.5x+72.
    (2)分为三种情况:①∵设y1=y2,
    5x+60=4.5x+72,
    解得:x=24,
    ∴当x=24时,选择优惠方法①,②均可;
    ②∵设y1>y2,即5x+60>4.5x+72,
    ∴x>24.当x>24整数时,选择优惠方法②;
    ③当设y1

    相关试卷

    2025届江苏铜山县数学九年级第一学期开学复习检测模拟试题【含答案】:

    这是一份2025届江苏铜山县数学九年级第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年辽宁省沈阳市皇姑区五校数学九年级第一学期开学质量检测模拟试题【含答案】:

    这是一份2024年辽宁省沈阳市皇姑区五校数学九年级第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年辽宁省大连市新民间联盟九年级数学第一学期开学达标检测模拟试题【含答案】:

    这是一份2024年辽宁省大连市新民间联盟九年级数学第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map