辽宁省沈阳和平区五校联考2025届九上数学开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只有0.0000007(毫米),数据0.0000007用科学记数法表示为( )
A.B.C.D.
2、(4分)已知A,B两地相距120千米,甲乙两人沿同一条公路匀速行驶,甲骑自行车以20千米/时从A地前往B地,同时乙骑摩托车从B地前往A地,设两人之间的距离为s(千米),甲行驶的时间为t(小时),若s与t的函数关系如图所示,则下列说法错误的是( )
A.经过2小时两人相遇
B.若乙行驶的路程是甲的2倍,则t=3
C.当乙到达终点时,甲离终点还有60千米
D.若两人相距90千米,则t=0.5或t=4.5
3、(4分)在多边形内角和公式的探究过程中,主要运用的数学思想是( )
A.化归思想B.分类讨论C.方程思想D.数形结合思想
4、(4分)若关于 x 的一元二次方程有两个相等的实数根,则 b 的值为( )
A.0B.4C.0 或 4D.0 或 4
5、(4分)已知,下列不等式中错误的是( )
A.B.C.D.
6、(4分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为( )
A.6B.12C.4D.8
7、(4分)矩形不具备的性质是( )
A.对角线相等B.四条边一定相等
C.是轴对称图形D.是中心对称图形
8、(4分)若y+1与x-2成正比例,当时,;则当时,的值是( )
A.-2B.-1C.0D.1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________
10、(4分)关于的x方程=1的解是正数,则m的取值范围是_____.
11、(4分)一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.
12、(4分)已知:将直线y=x﹣1向上平移3个单位后得直线y=kx+b,则直线y=kx+b与x轴交点坐标为_____.
13、(4分)已知菱形两条对角线的长分别为12和16,则这个菱形的周长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(0,4),B(﹣4,2),C(0,2).
(1)画△A1B1C1,使它与△ABC关于点C成中心对称;
(2)平移△ABC,使点A的对应点A2坐标为(﹣2,4),画出平移后对应的△A2B2C2;
(3)若将△A1B1C1绕点P旋转可得到△A2B2C2,请直接写出旋转中心P的坐标.
15、(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,AB=5,BC=1.
(1)求OD长的取值范围;
(2)若∠CBD=30°,求OD的长.
16、(8分)如图,在中,是边上的高,的平分线交于点,于点,请判断四边形的形状,并证明你的结论.
17、(10分)如图,平行四边形的两条对角线相交于点、分别是的中点,过点作任一条直线交于点,交于点,求证:
(1) ;
(2) .
18、(10分)某工厂从外地购得A种原料16吨,B种原料13吨,现计划租用甲、乙两种货车6辆将购得的原料一次性运回工厂,已知一辆甲种货车可装2吨A种原料和3吨B种原料;一辆乙种货车可装3吨A种原料和2吨B种原料,设安排甲种货车x辆.
(1)如何安排甲、乙两种货车?写出所有可行方案;
(2)若甲种货车的运费是每辆500元,乙种货车的运费是每辆350元,设总运费为W元,求W(元)与x(辆)之间的函数关系式;
(3)在(2)的前提下,当x为何值时,总运费最少,此时总运费是多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据从小到大排列:0、3、、5,中位数是4,则________.
20、(4分)若分式的值为零,则x的值为______.
21、(4分)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为 __.
22、(4分)如图,在中,,,,为上一点,,将绕点旋转至,连接,分别为的中点,则的最大值为_________.
23、(4分)如图,在宽为10m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为 m1.
二、解答题(本大题共3个小题,共30分)
24、(8分)王老师从学校出发,到距学校的某商场去给学生买奖品,他先步行了后,换骑上了共享单车,到达商场时,全程总共刚好花了.已知王老师骑共享单车的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).
(1)求王老师步行和骑共享单车的平均速度分别为多少?
(2)买完奖品后,王老师原路返回,为按时上班,路上所花时间最多只剩10分钟,若王老师仍采取先步行,后换骑共享单车的方式返回,问:他最多可步行多少米?
25、(10分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.
(1)求反比例函数的解析式;
(2)过点作轴的平行线,点在直线上运动,点在轴上运动.
①若是以为直角顶点的等腰直角三角形,求的面积;
②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)
26、(12分)(本小题满分12分)
直线y=x+6和x轴,y轴分别交于点E,F,点A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作长方形ABCD,AB:BC=3:1.
(1)当点A与点F重合时(图1),求证:四边形ADBE是平行四边形,并求直线DE的表达式;
(2)当点A不与点F重合时(图2),四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你出来.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 1<1时,n为负数.
【详解】
0.000 000 1=1×10-1.
故选C.
此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
2、B
【解析】
由图象得到经过2小时两人相遇,A选项正确,由于乙的速度是=40千米/时,乙的速度是甲的速度的2倍可知B选项错误,计算出乙到达终点时,甲走的路程,可得C选项正确,当0
由图象知:经过2小时两人相遇,A选项正确;
甲的速度是20千米/小时,则乙的速度是=40千米/时,乙的速度是甲的速度的2倍,所以在乙到达终点之前,乙行驶的路程都是甲的二倍,B选项错误;
乙到达终点时所需时间为=3(小时),3小时甲行驶3×20=60(千米),离终点还有120-60=60(千米),故C选项正确,
当0
故选B.
此题考查一次函数的应用,解题关键在于看懂函数图象,从函数图像得出解题所需的必要条件.
3、A
【解析】
根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.
【详解】
解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.
故答案为A.
本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.
4、B
【解析】
根据方程有两个相等的实数根可得根的判别式,即可得到关于的方程,再结合一元二次方程的二次项系数不为0即可得到结果.
【详解】
方程有两个相等的实数根,
,
解得或,
又,
.
故选:.
本题考查了一元二次方程根的判别式,解题的关键是熟记一元二次方程根的情况与判别式的关系:(1),方程有两个不相等的实数根;(2),方程有两个相等的实数根;(3),方程没有实数根.
5、D
【解析】
不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.
【详解】
解:∵a<b,
∴3a<3b,A选项正确;
a+5<b+5,B选项正确;
a-5<b-5,C选项正确;
-3a>-3b,D选项错误;
故选:D.
本题主要考查不等式的性质,主要考查不等式的性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
6、A
【解析】
过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.
【详解】
解:如图,过点D作DH⊥AC于H,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,,
∴Rt△DEF≌Rt△DGH(HL),
∴S△EDF=S△GDH,设面积为S,
同理Rt△ADF≌Rt△ADH,
∴S△ADF=S△ADH,
即38+S=50-S,
解得S=1.
故选A.
本题考查角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,解题的关键是作辅助线构造出全等三角形并利用角平分线的性质.
7、B
【解析】
根据矩形的性质即可判断.
【详解】
解:矩形的对边相等,四条边不一定都相等,B选项错误,由矩形的性质可知选项A、C、D正确.
故选:B
本题考查了矩形的性质,准确理解并掌握矩形的性质是解题的关键.
8、C
【解析】
由y+1与x-2成正比例可设y+1=k(x-2),再把时,代入求出k的值,把代入解析式解答即可.
【详解】
解:∵y+1与x-2成正比例,
∴设y+1=k(x-2),
∵时,,
∴1+1=k(1-2),解得k=-1,
∴y+1=-(x-2),即y=1-x;
把代入y=1-1=1.
故选:C.
本题考查待定系数法求一次函数的解析式,先根据y+1与x-2成正比例设出一此函数的解析式是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.
【详解】
∵点(a,b)在一次函数y=2x-1的图象上,
∴b=2a-1,
∴2a-b=1,
∴4a-2b=6,
∴4a-2b-1=6-1=1,
故答案为:1.
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
10、m>﹣5且m≠0
【解析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.
【详解】
去分母,得m=x-5,
即x=m+5,
∵方程的解是正数,
∴m+5>0,即m>-5,
又因为x-5≠0,
∴m≠0,
则m的取值范围是m>﹣5且m≠0,
故答案为:m>﹣5且m≠0.
本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.
11、y=x+3
【解析】
因为一次函数y=kx+3的图象过点A(1,4),
所以k+3=4,
解得,k=1,
所以,该一次函数的解析式是:y=x+3,
故答案是:y=x+3
【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).
12、(﹣4,0).
【解析】
根据平行直线的解析式的k值相等,向上平移3个单位,横坐标不变,纵坐标加3,写出平移后的解析式,然后令y=0,即可得解.
【详解】
∵直线y=x﹣1向上平移3个单位后得直线y=kx+b,
∴直线y=kx+b的解析式为:y=x+2,
令y=0,则0=x+2,
解得:x=﹣4,
∴直线y=kx+b与x轴的交点坐标为(﹣4,0).
故答案为:(﹣4,0).
本题主要考查直线平移的规律以及直线与x轴交点的坐标,掌握平行直线的解析式的k值相等,是解题的关键.
13、1
【解析】
根据菱形的对角线互相垂直平分,利用勾股定理即可解决.
【详解】
如图,四边形ABCD是菱形,AC=12,BD=16,
∵四边形ABCD是菱形,
∴AC⊥BC,AB=BC=CD=AD,AO=OC=6,OB=OD=8,
在Rt△AOB中,AB=,
∴菱形ABCD周长为1.
故答案为1
本题考查菱形的性质、勾股定理等知识,记住菱形的对角线互相垂直平分、菱形的四边相等是解决问题的关键,属于中考常考题型.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析;(3)P(﹣1,2)
【解析】
(1)分别作出,,的对应点,,,顺次连接即可.
(2)分别求出,,的对应点,,顺次连接即可.
(3)利用旋转对称图形得出对应点的连线的交点进而得出答案..
【详解】
解:(1)如图所示,△即为所求.
(2)如图所示,△即为所求.
(3).
理由如下:∵△A1B1C1与△A2B2C2关于P点成中心对称,
∴P点是B1B2的中点,
又∵B1B2的坐标为(4,2)、(-6,2),
∴P坐标为(-1,2).
本题考查作图旋转变换,平移变换等知识,根据题意得出对应点坐标是解题关键.
15、(1);(2).
【解析】
(1)根据三角形三边关系即可求解;
(2)过点D作DE⊥BC交BC延长线于点E,构建直角三角形,利用勾股定理解题即可.
【详解】
解:(1)∵四边形ABCD是平行四边形,AB=5,BC=1,
∴AB=CD=5,BC=AD=1,OD=BD,
∴在△ABD中,,
∴.
(2)过点D作DE⊥BC交BC延长线于点E,
∵∠CBD=30°,
∴DE=BD,
∵四边形ABCD是平行四边形,
∴OD=BD=DE,
设OD为x,则DE=x,BD=2x,
∴BE=,
∵BC=1,
∴CE=BE-BC=-1,
在Rt△CDE中,,
解得,,
∵BE=>BC=1,
∴不合题意,舍
∴OD=.
故答案为:(1);(2).
本题考查了平行四边形性质、三角形三边关系以及勾股定理的运用,熟练解一元二次方程是解决本题的关键.
16、见解析
【解析】
利用角平分线性质得到GE=CE,,从而得到,由两个垂直可得到,从而,即有,得到EC=CF,即有GE=CF,又,得到四边形是平行四边形,又EC=CF,即四边形为菱形
【详解】
证明:四边形是菱形
是的平分线,
四边形是平行四边形
又
平行四边形是菱形
本题主要考查平行四边形的判定、菱形的判定、全等三角形的判定与性质等知识点,本题关键在于能够先判断出四边形是平行四边形
17、(1)见解析;(2)见解析
【解析】
(1)因为四边形是平行四边形,,证得≌,即可求出;
(2)因为四边形ABCD是平行四边形,G是OC的中点,E是OA的中点,所以可以证得OF=OH,又根据(1)中结论,即可得出四边形EFGH是平行四边形,根据平行四边形性质可得.
【详解】
证明:(1)∵四边形是平行四边形,
∴,,
∴,
∴≌,
∴
(2)∵是的中点,是的中点,
∴,,
∴
又∵
∴四边形是平行四边形,
∴
本题考查了平行四边形的判定与性质.解题的关键是选择适宜的证明方法.此题出现了对角线,所以选择对角线互相平分的四边形是平行四边形证明比较简单.
18、 (1)有两种可行方案,方案一:安排甲种货车1辆,乙种货车5辆,方案二:安排甲种货车2辆,乙种货车4辆;
(2) x为1时,总运费最少,此时总运费是2250元.
【解析】
【分析】(1)依题意得,解不等式组即可;
(2)直接根据数量关系可列W=500x+350(6−x)=150x+2100;
(3)结合(1)和(2),当x最小时,运费最少.
【详解】(1)由题意可得,
,
解得,1⩽x⩽2,
∴有两种可行方案,
方案一:安排甲种货车1辆,乙种货车5辆,
方案二:安排甲种货车2辆,乙种货车4辆;
(2)由题意可得,
W=500x+350(6−x)=150x+2100,
即W(元)与x(辆)之间的函数关系式是W=150x+2100;
(3)由(2)知,
W=150x+2100,
∵1⩽x⩽2,
∴当x=1时,W取得最小值,此时W=2250,
答:x为1时,总运费最少,此时总运费是2250元.
【点睛】此题考核知识点:列不等式组解应用题;求函数的最小值.解题的关键是:根据题意列出不等式组,并求出解集;分析函数解析式中函数值与自变量之间的关系,从而轻易确定函数最小值.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5
【解析】
根据中位数的求法可以列出方程,解得x=5
【详解】
解:∵一共有4个数据
∴中位数应该是排列后第2和第3个数据的平均数
∴可得:
解得:x=5
故答案为5
此题考查中位数,熟练掌握中位数的求法是解题关键
20、-1
【解析】
试题分析:因为当时分式的值为零,解得且,所以x=-1.
考点:分式的值为零的条件.
21、
【解析】
在菱形 中, ,设
22、+2
【解析】
利用直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得MF的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.
【详解】
解:如图,取AB的中点M,连接MF和CM,
∵将线段AD绕点A旋转至AD′,
∴AD′=AD=1,
∵∠ACB=90°,
∵AC=6,BC=2,
∴AB=.
∵M为AB中点,
∴CM=,
∵AD′=1.
∵M为AB中点,F为BD′中点,
∴FM=AD′=2.
∵CM+FM≥CF,
∴当且仅当M、F、C三点共线且M在线段CF上时,CF最大,
此时CF=CM+FM=+2.
故答案为:+2.
此题考查旋转的性质,解题的关键是掌握旋转的性质及直角三角形斜边上的中线等于斜边的一半,知道当且仅当M、F、C三点共线且M在线段CF上时CF最大是解题的关键.
23、2.
【解析】
试题分析:由图可得出两条路的宽度为:1m,长度分别为:10m,30m,这样可以求出小路的总面积,又知矩形的面积,耕地的面积=矩形的面积-小路的面积,由此计算耕地的面积.
由图可以看出两条路的宽度为:1m,长度分别为:10m,30m,
所以,可以得出路的总面积为:10×1+30×1-1×1=49m1,
又知该矩形的面积为:10×30=600m1,
所以,耕地的面积为:600-49=2m1.
故答案为2.
考点:矩形的性质.
二、解答题(本大题共3个小题,共30分)
24、(1), (2)
【解析】
(1)设王老师步行的平均速度,则他骑车的平均速度,根据“到距学校的某商场去给学生买奖品,他先步行了后,换骑上了共享单车,到达商场时,全程总共刚好花了.已知王老师骑共享单车的平均速度是步行速度的3倍”列出方程,即可解答.
(2)设王老师返回时步行了,根据(1)列出不等式,即可解答.
【详解】
解:(1)设王老师步行的平均速度,则他骑车的平均速度,根据题意,
得
.
解这个方程,得.
经检验,是原方程的根
答:王老师步行的平均速度为,他骑车的平均速度为.
(2)设王老师返回时步行了.
则,.
解得,.
答:王老师,返回时,最多可步行.
此题考查了分式方程的应用,一元一次不等式的应用,解题关键在于根据题意正确列出方程、列出不等式.
25、(1);(2)①或.②1或2.
【解析】
(1)设的坐标分别为,根据三角形的面积,构建方程即可解决问题.
(2)①分两种情形画出图形:当点P在线段BM上,当点P在线段BM的延长线上时,分别利用全等三角形的性质求解即可.
②当点Q是等腰三角形的直角顶点时,分两种情形分别求解即可.
【详解】
解:(1))∵四边形OACD是正方形,边长为3,
∴点B的纵坐标为3,点E的横坐标为3,
∵反比例函数的图象交AC,CD于点B,E,
设的坐标分别为.
∵S△OBE=4,
可得,.
解得,,(舍).
所以,反比例函数的解析式为.
(2))①如图1中,设直线m交OD于M.
由(1)可知B(1,3),AB=1,BC=2,
当PC=PQ,∠CPQ=90°时,
∵∠CBP=∠PMQ=∠CPQ=90°,
∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,
∴∠PCB=∠MPQ,∵PC=PQ,
∴△CBP≌△PMQ(AAS),
∴BC=PM=2,PB=MQ=1,
∴PC=PQ=
∴S△PCQ=
如图2中,当PQ=PC,∠CPQ=90°,
同法可得△CBP≌△PMQ(AAS),
∴PM=BC=2,OM=PB=1,
∴PC=PQ=,
∴S△PCQ=.
所以,的面积为或.
②当点Q是等腰三角形的直角顶点时,同法可得CQ=PQ=,此时S△PCQ=1.
或CQ′=PQ′=,可得S△P′CQ′=2,
不存在点C为等腰三角形的直角顶点,
综上所述,△CPQ的面积除了“①”中求得的结果外,还可以是1或2.
故答案为1或2.
本题属于反比例函数综合题,考查了正方形的性质,反比例函数的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
26、(1);(2)四边形ADBE仍然是平行四边形;.
【解析】
试题分析:对于直线y=x+6,分别令x与y为0求出y与x的值,确定出E与F坐标,
(1)当A与F重合时,根据F坐标确定出A坐标,进而确定出AB的长,由AB与BC的比值求出BC的长,确定出AD=BE,而AD与BE平行,利用一组对边平行且相等的四边形为平行四边形得到四边形AEBD为平行四边形;根据AB与BC的长确定出D坐标,设直线DE解析式为y=kx+b,将D与E坐标代入求出k与b的值,即可确定出直线DE解析式;
(2)当点A不与点F重合时,四边形ADBE仍然是平行四边形,理由为:根据直线y=x+6解析式设出A坐标,进而表示出AB的长,根据A与B横坐标相同确定出B坐标,进而表示出EB的长,发现EB=AD,而EB与AD平行,利用一组对边平行且相等的四边形为平行四边形得到四边形AEBD为平行四边形;根据BC的长求出OC的长,表示出D坐标,设直线DE解析式为y=k1x+b1,将D与E坐标代入求出k1与b1的值,即可确定出直线DE解析式.
试题解析:对于直线y=x+6,
令x=0,得到y=6;令y=0,得到x=﹣8,即E(﹣8,0),F(0,6),
(1)当点A与点F重合时,A(0,6),即AB=6,
∵AB:BC=2:1,
∴BC=8,
∴AD=BE=8,
又∵AD∥BE,
∴四边形ADBE是平行四边形;
∴D(8,6),
设直线DE解析式为y=kx+b(k、b为常数且k≠0),
将D(8,6),E(﹣8,0)代入得:,
解得:b=2,k=.
则直线DE解析式为y=x+2;
(2)四边形ADBE仍然是平行四边形,理由为:
设点A(m,m+6)即AB=m+6,OB=﹣m,即B(m,0),
∴BE=m+8,
又∵AB:BC=2:1,
∴BC=m+8,
∴AD=m+8,
∴BE=AD,
又∵BE∥AD,
∴四边形ADBE仍然是平行四边形;
又∵BC=m+8,
∴OC=2m+8,
∴D(2m+8,m+6),
设直线DE解析式为y=k1x+b1(k1、b1为常数且k1≠0),
将D与E坐标代入得:,
解得:k1=,b1=2,
则直线DE解析式为y=x+2.
考点:一次函数综合题.
题号
一
二
三
四
五
总分
得分
批阅人
2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】: 这是一份2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】,共29页。试卷主要包含了选择题,一象限B.第二,填空题等内容,欢迎下载使用。
2025届辽宁省沈阳大东区四校联考九上数学开学质量跟踪监视试题【含答案】: 这是一份2025届辽宁省沈阳大东区四校联考九上数学开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽宁省沈阳和平区五校联考2023-2024学年数学八上期末预测试题【含解析】: 这是一份辽宁省沈阳和平区五校联考2023-2024学年数学八上期末预测试题【含解析】,共18页。试卷主要包含了不等式组的解集在数轴上表示为,下列图形中等内容,欢迎下载使用。