江西省赣州市2024-2025学年九上数学开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将下列多项式因式分解,结果中不含因式x-1的是( )
A.x2-1B.x2+2x+1C.x2-2x+1D.x(x-2)+(2-x)
2、(4分)如图,在中,,点是外一点,连接、、,且交于点,在上取一点,使得,.若,则的度数为
A.B.C.D.
3、(4分)若点P在一次函数的图像上,则点P一定不在( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm的速度运动(点P不与点A、点C重合),设点P运动时间为x秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是( )
A.B.
C.D.
5、(4分)在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )
A.a2=b2﹣c2B.c2=2a2C.a=bD.∠C=90°
6、(4分)已知,则有( )
A.B.C.D.
7、(4分)如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )
A.点CB.点OC.点ED.点F
8、(4分)如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为( )
A.B.C.2D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.
10、(4分)如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF最小值是________.
11、(4分)如图,四边形ABCD是梯形,AD∥BC,AC=BD,且AC⊥BD,如果梯形ABCD的中位线长是5,那么这个梯形的高AH=___.
12、(4分)函数y=kx(k0)的图象上有两个点A1(,),A2(,),当<时,>,写出一个满足条件的函数解析式______________.
13、(4分)如图,直线与轴、轴分别交于点和点,点,分别为线段,的中点,点为上一动点,值最小时,点的坐标为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正比例函数的图象与一次函数的图象交于点,一次函数图象经过点,与轴的交点为,与轴的交点为.
(1)求一次函数解析式;
(2)求点的坐标.
15、(8分)解不等式组:,并写出所有整数解.
16、(8分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.
17、(10分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为 .
18、(10分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是 ;
(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:=2,=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).
20、(4分)某学校八年级班有名同学,名男生的平均身高为名女生的平均身高,则全班学生的平均身高是__________.
21、(4分)如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______
22、(4分)直线是由直线向上平移______个单位长度得到的一条直线.直线是由直线向右平移______个单位长度得到的一条直线.
23、(4分)平面直角坐标系中,点M(-3,-4)到x轴的距离为______________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,直线分别交轴,轴于点.
(1)当,自变量的取值范围是 (直接写出结果);
(2)点在直线上.
①直接写出的值为 ;
②过点作交轴于点,求直线的解析式.
25、(10分)解一元二次方程.
(1) (2)
26、(12分)解方程:
(1);
(2)甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.求甲、乙两公司各有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
将各选项进行因式分解即可得以选择出正确答案.
【详解】
A. x2﹣1=(x+1)(x-1);
B. x2+2x+1=(x+1)2 ;
C. x2﹣2x+1 =(x-1)2;
D. x(x﹣2)﹣(x﹣2)=(x-2)(x-1);
结果中不含因式x-1的是B;
故选B.
2、C
【解析】
利用等腰三角形的性质,得到∠ADE=68°,由三角形外角性质即可求出∠AEB.
【详解】
解:由题意,,
∵,
∴∠ADE=,
∴∠AEB=44°+68°=112°;
故选择:C.
本题考查了等腰三角形的性质,三角形的外角性质,解题的关键是求出∠ADE的度数.
3、C
【解析】
根据一次函数的性质进行判定即可.
【详解】
一次函数y=-x+4中k=-1<0,b>0,
所以一次函数y=-x+4的图象经过二、一、四象限,
又点P在一次函数y=-x+4的图象上,
所以点P一定不在第三象限,
故选C.
本题考查了一次函数的图象和性质,熟练掌握是解题的关键.
y=kx+b:当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.
4、D
【解析】
根据点P的路线,找到临界点为D点,则分段讨论P在边AD、边DC上运动时的y与x的函数关系式.
【详解】
当0≤x≤4时,点P在AD边上运动
则y=(x+4)4=2x+8
当4≤x≤8时,点P在DC边上运动
则y═(8-x+4)4=-2x+24
根据函数关系式,可知D正确
故选D.
本题为动点问题的函数图象探究题,考查了一次函数图象性质,应用了数形结合思想.
5、A
【解析】
根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.
【详解】
解:设∠A、∠B、∠C分别为x、x、2x,
则x+x+2x=180°,
解得,x=45°,
∴∠A、∠B、∠C分别为45°、45°、90°,
∴a2+b2=c2,A错误,符合题意,
c2=2a2,B正确,不符合题意;
a=b,C正确,不符合题意;
∠C=90°,D正确,不符合题意;
故选:A.
本题考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.
6、A
【解析】
求出m的值,求出2)的范围5<m<6,即可得出选项.
【详解】
m=(-)×(-2),
=,
=×3=2
=,
∵,
∴5<<6,
即5<m<6,
故选A.
本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<
<6,题目比较好,难度不大.
7、B
【解析】
从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.
【详解】
解:∵AB=2,BC=4,四边形ABCD是矩形,
∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,
∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.
故选:B.
本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M一定在BD上这一信息.
8、A
【解析】
根据全等三角形的判定先求证△ADO≌△DEH,然后再根据等腰直角三角形中等边对等角求出∠ECH=45°,再根据点在一次函数上运动,作OE′⊥CE,求出OE′即为OE的最小值.
【详解】
解:如图,作EH⊥x轴于H,连接CE.
∵∠AOD=∠ADE=∠EHD=90°,
∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,
∴∠ADO=∠DEH,
∵AD=DE,
∴△ADO≌△DEH(AAS),
∴OA=DH=OC,OD=EH,
∴OD=CH=EH,
∴∠ECH=45°,
∴点E在直线y=x﹣3上运动,作OE′⊥CE,则△OCE′是等腰直角三角形,
∵OC=3,
∴OE′= ,
∴OE的最小值为 .
故选:A.
全等三角形的判定和性质、等腰三角形的性质和垂线段最短的公理都是本题的考点,熟练掌握基础知识并作出辅助线是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、众数
【解析】
根据题意可得:商场应该关注鞋的型号的销售量,特别是销售量最大的鞋型号即众数.
【详解】
某商场应该关注的各种鞋型号的销售量,特别是销售量最大的鞋型号,由于众数是数据中出现次数最多的数,故最应该关注的是众数.
故答案为:众数.
本题考查了统计的有关知识,主要包括平均数、中位数、众数和极差.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
10、4.8
【解析】
【分析】连接AP,由题意知四边形AFPE是矩形,由矩形的性质知EF=AP,所以当AP最小时,EF最小,根据垂线段最短进行解答即可.
【详解】如图,连接AP,
由题意知,四边形AFPE是矩形,则有AP=EF,
当EF取最小值时,则AP也取最小值,
∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AP有最小值,此时EF有最小值,
由勾股定理知BC==10,
∵S△ABC=AB•AC=BC•AP,
∴AP=4.8,
即EF的最小值是4.8,
故答案为:4.8.
【点睛】本题考查了矩形的判定与性质、勾股定理、垂线段最短等,正确分析是解题的关键.
11、1.
【解析】
过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.可得四边形ACFD是平行四边形,根据平行四边形的性质可得AD=CF,再判定△BDF是等腰直角三角形,根据等腰直角三角形的性质求出AH=BF解答.
【详解】
如图,过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.
则四边形ACFD是平行四边形,
∴AD=CF,
∴AD+BC=BF,
∵梯形ABCD的中位线长是1,
∴BF=AD+BC=1×2=10.
∵AC=BD,AC⊥BD,
∴△BDF是等腰直角三角形,
∴AH=DE=BF=1,
故答案为:1.
本题考查了梯形的中位线,等腰直角三角形的判定与性质,平行四边形的判定与性质,梯形的问题关键在于准确作出辅助线.
12、y=-x(k<0即可)
【解析】
根据A1(x1,y1),A2(x2,y2)满足x1<x2时,y1>y2判断出函数图象的增减性即可.
【详解】
解:∵A1(x1,y1),A2(x2,y2)满足x1<x2时,y1>y2,
∴函数y=kx(k≠0)满足k<0
∴y=-x(k<0即可);
故答案为:y=-x(k<0即可).
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
13、 (-,0)
【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
【详解】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4);
令y=x+4中y=0,则x+4=0,解得:x=-6,
∴点A的坐标为(-6,0).
∵点C、D分别为线段AB、OB的中点,
∴点C(-3,1),点D(0,1).
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-1).
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(-3,1),D′(0,-1),
∴有,解得:,
∴直线CD′的解析式为y=-x-1.
令y=-x-1中y=0,则0=-x-1,解得:x=-,
∴点P的坐标为(-,0).
故答案为:(-,0).
本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)点的坐标为
【解析】
(1)将代入中即可求解;
(2)联立两函数即可求解.
【详解】
解:(1)将代入中,得:
,
∴
(2)联立,得
∴点的坐标为
此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.
15、1,2,3,4,5,6
【解析】
根据不等式的性质依次求出各不等式的解集,再求出公共解集,即可求解.
【详解】
解
解不等式①得x≥1,
解不等式②得x<
故不等式组的解集为1≤x<
故整数解为1,2,3,4,5,6
此题主要考查不等式的解集,解题的关键是熟知不等式的性质.
16、2.
【解析】
根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.
【详解】
解:
原式
=2
本题考核知识点:二次根式化简求值. 解题关键点:掌握乘法公式.
17、(1)详见解析;(2)当点O运动到AC的中点时,四边形CEAF是矩形,理由详见解析;(3)1.
【解析】
(1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;
(2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;
(3)先根据勾股定理求出AC,得出△ACE的面积=AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=AB•AC,凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积,即可得出结果.
【详解】
(1)证明:∵EF∥BC,
∴∠OEC=∠BCE,
∵CE平分∠ACB,
∴∠BCE=∠OCE,
∴∠OEC=∠OCE,
∴EO=CO,
同理:FO=CO,
∴EO=FO;
(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:
由(1)得:EO=FO,
又∵O是AC的中点,
∴AO=CO,
∴四边形CEAF是平行四边形,
∵EO=FO=CO,
∴EO=FO=AO=CO,
∴EF=AC,
∴四边形CEAF是矩形;
(3)解:由(2)得:四边形CEAF是矩形,
∴∠AEC=90°,
∴AC===5,
△ACE的面积=AE×EC=×3×4=6,
∵122+52=132,
即AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴△ABC的面积=AB•AC=×12×5=30,
∴凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积=30﹣6=1;
故答案为1.
本题考查了角平分线的概念,三角形的性质,矩形的判断以及四边形与几何动态综合,知识点综合性强,属于较难题型.
18、(1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC.
【解析】
试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;
(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;
(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;
(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.
试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;
(2)仍成立.
证明:如图2,连接AC、BD.
由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;
(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.
在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.
又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;
(4)O在移动过程中可形成直线AC.
考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、答案为:乙 ;
【解析】
【分析】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
【详解】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定;乙的方差比较小,所以乙的成绩比较稳定.
故答案为乙
【点睛】本题考核知识点:方差.解题关键点:理解方差的意义.
20、
【解析】
只要运用求平均数公式:即可求得全班学生的平均身高.
【详解】
全班学生的平均身高是:.
故答案为:1.
本题考查的是样本平均数的求法.熟记公式是解决本题的关键.
21、
【解析】
根据题意画出翻折后的图形,连接OE、DE,先证明△OED是等边三角形,再利用同底等高的三角形面积相等,说明S△AED=S△OED,作OF⊥ED于F,求出△OED的面积即可得出结果.
【详解】
解:如图,△AEC是△ABC沿AC翻折后的图形,连接OE、DE,
∵四边形ABCD是平行四边形,
∴OB=OD=BD=2,
∵△AEC是△ABC沿AC翻折后的图形,∠AOB=60º,
∴∠AOE=60º,OE=OB,
∴∠EOD=60º,OE=OD,
∴△OED是等边三角形,
∴∠DEO=∠AOE=60º,ED=OD=2,
∴ED∥AC,
∴S△AED=S△OED,
作OF⊥ED于F,DF=ED=1,
∴OF==,
∴S△OED=ED·DF=
∴S△AED=.
故答案为:.
本题考查了图形的变换,平行四边形的性质,等边三角形的判定与性质,找到S△AED=S△OED是解题的关键.
22、2, 1.
【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
【详解】
解:直线是由直线向上平移 2个单位长度得到的一条直线.由直线向右平移 1个单位长度得到.
故答案是:2;1.
本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
23、1
【解析】
根据点到x轴的距离是其纵坐标的绝对值解答即可.
【详解】
点P(﹣3,-1)到x轴的距离是其纵坐标的绝对值,所以点P(﹣3,-1)到x轴的距离为1.
故答案为:1.
本题考查了点的坐标的几何意义,明确点的坐标与其到x、y轴的距离的关系是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)①1;②
【解析】
(1)先利用直线y=3x+3确定A、B的解析式,然后利用一次函数的性质求解;
(2))①把C(-,n)代入y=3x+3可求出n的值;
②利用两直线垂直,一次项系数互为负倒数可设直线CD的解析式为y=-x+b,然后把C(-,1)代入求出b即可.
【详解】
解:(1)当y=0时,3x+3=0,解得x=-1,则A(-1,0),
当x=0时,y=3x+3=3,则B(0,3),
当0<y≤3,自变量x的取值范围是-1≤x<0;
(2)①把C(-,n)代入y=3x+3得3×(-)+3=n,解得n=1;
②∵AB⊥CD,
∴设直线CD的解析式为y=-x+b,
把C(-,1)代入得-×(-)+b=1,解得b=,
∴直线CD的解析式为y=-x+.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.
25、 (1)x1=3,x2=6; (2) x1=2+,x2=2-.
【解析】
(1)利用因式分解法即可求解;
(2)利用配方法解方程即可求解.
【详解】
(1)
∴
∴
∴,,
解得:x1=3,x2=6;
(2)
∴
∴,
∴,
解得x1=2+,x2=2-.
此题分别考查了一元二次方程的几种解法,解题的关键是根据不同的方程的形式选择最佳方法解决问题.
26、(1),;(2)甲公司有1名员工,乙公司有25名员工.
【解析】
(1)直接用配方法解一元二次方程即可;
(2)设乙公司有x人,则甲公司有1.2x人,根据人均捐款钱数=捐款总钱数÷人数,结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
解:(1),
,;
(2)解:设乙公司有x人,则甲公司有1.2x人,
依题意,得:,
解得:x=25,
经检验,x=25是原分式方程的解,且符合题意,
∴1.2x=1.
答:甲公司有1名员工,乙公司有25名员工.
本题考查了解一元二次方程和分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
江西省赣州市兴国县2024-2025学年数学九上开学达标检测模拟试题【含答案】: 这是一份江西省赣州市兴国县2024-2025学年数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江西省赣州市会昌县2024-2025学年九上数学开学联考试题【含答案】: 这是一份江西省赣州市会昌县2024-2025学年九上数学开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江西省赣州市赣州七中学2024-2025学年数学九上开学统考模拟试题【含答案】: 这是一份江西省赣州市赣州七中学2024-2025学年数学九上开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。