|试卷下载
终身会员
搜索
    上传资料 赚现金
    江西省赣州市2024-2025学年九上数学开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    江西省赣州市2024-2025学年九上数学开学检测模拟试题【含答案】01
    江西省赣州市2024-2025学年九上数学开学检测模拟试题【含答案】02
    江西省赣州市2024-2025学年九上数学开学检测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省赣州市2024-2025学年九上数学开学检测模拟试题【含答案】

    展开
    这是一份江西省赣州市2024-2025学年九上数学开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)将下列多项式因式分解,结果中不含因式x-1的是( )
    A.x2-1B.x2+2x+1C.x2-2x+1D.x(x-2)+(2-x)
    2、(4分)如图,在中,,点是外一点,连接、、,且交于点,在上取一点,使得,.若,则的度数为
    A.B.C.D.
    3、(4分)若点P在一次函数的图像上,则点P一定不在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、(4分)如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm的速度运动(点P不与点A、点C重合),设点P运动时间为x秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是( )
    A.B.
    C.D.
    5、(4分)在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )
    A.a2=b2﹣c2B.c2=2a2C.a=bD.∠C=90°
    6、(4分)已知,则有( )
    A.B.C.D.
    7、(4分)如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )
    A.点CB.点OC.点ED.点F
    8、(4分)如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为( )
    A.B.C.2D.3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.
    10、(4分)如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF最小值是________.
    11、(4分)如图,四边形ABCD是梯形,AD∥BC,AC=BD,且AC⊥BD,如果梯形ABCD的中位线长是5,那么这个梯形的高AH=___.
    12、(4分)函数y=kx(k0)的图象上有两个点A1(,),A2(,),当<时,>,写出一个满足条件的函数解析式______________.
    13、(4分)如图,直线与轴、轴分别交于点和点,点,分别为线段,的中点,点为上一动点,值最小时,点的坐标为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,正比例函数的图象与一次函数的图象交于点,一次函数图象经过点,与轴的交点为,与轴的交点为.
    (1)求一次函数解析式;
    (2)求点的坐标.
    15、(8分)解不等式组:,并写出所有整数解.
    16、(8分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.
    17、(10分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F
    (1)求证:EO=FO;
    (2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
    (3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为 .
    18、(10分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.
    (1)如图1,若点O与点A重合,则OM与ON的数量关系是 ;
    (2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
    (3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
    (4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:=2,=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).
    20、(4分)某学校八年级班有名同学,名男生的平均身高为名女生的平均身高,则全班学生的平均身高是__________.
    21、(4分)如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______
    22、(4分)直线是由直线向上平移______个单位长度得到的一条直线.直线是由直线向右平移______个单位长度得到的一条直线.
    23、(4分)平面直角坐标系中,点M(-3,-4)到x轴的距离为______________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平面直角坐标系中,直线分别交轴,轴于点.
    (1)当,自变量的取值范围是 (直接写出结果);
    (2)点在直线上.
    ①直接写出的值为 ;
    ②过点作交轴于点,求直线的解析式.
    25、(10分)解一元二次方程.
    (1) (2)
    26、(12分)解方程:
    (1);
    (2)甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.求甲、乙两公司各有多少人?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    将各选项进行因式分解即可得以选择出正确答案.
    【详解】
    A. x2﹣1=(x+1)(x-1);
    B. x2+2x+1=(x+1)2 ;
    C. x2﹣2x+1 =(x-1)2;
    D. x(x﹣2)﹣(x﹣2)=(x-2)(x-1);
    结果中不含因式x-1的是B;
    故选B.
    2、C
    【解析】
    利用等腰三角形的性质,得到∠ADE=68°,由三角形外角性质即可求出∠AEB.
    【详解】
    解:由题意,,
    ∵,
    ∴∠ADE=,
    ∴∠AEB=44°+68°=112°;
    故选择:C.
    本题考查了等腰三角形的性质,三角形的外角性质,解题的关键是求出∠ADE的度数.
    3、C
    【解析】
    根据一次函数的性质进行判定即可.
    【详解】
    一次函数y=-x+4中k=-1<0,b>0,
    所以一次函数y=-x+4的图象经过二、一、四象限,
    又点P在一次函数y=-x+4的图象上,
    所以点P一定不在第三象限,
    故选C.
    本题考查了一次函数的图象和性质,熟练掌握是解题的关键.
    y=kx+b:当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.
    4、D
    【解析】
    根据点P的路线,找到临界点为D点,则分段讨论P在边AD、边DC上运动时的y与x的函数关系式.
    【详解】
    当0≤x≤4时,点P在AD边上运动
    则y=(x+4)4=2x+8
    当4≤x≤8时,点P在DC边上运动
    则y═(8-x+4)4=-2x+24
    根据函数关系式,可知D正确
    故选D.
    本题为动点问题的函数图象探究题,考查了一次函数图象性质,应用了数形结合思想.
    5、A
    【解析】
    根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.
    【详解】
    解:设∠A、∠B、∠C分别为x、x、2x,
    则x+x+2x=180°,
    解得,x=45°,
    ∴∠A、∠B、∠C分别为45°、45°、90°,
    ∴a2+b2=c2,A错误,符合题意,
    c2=2a2,B正确,不符合题意;
    a=b,C正确,不符合题意;
    ∠C=90°,D正确,不符合题意;
    故选:A.
    本题考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.
    6、A
    【解析】
    求出m的值,求出2)的范围5<m<6,即可得出选项.
    【详解】
    m=(-)×(-2),
    =,
    =×3=2
    =,
    ∵,
    ∴5<<6,
    即5<m<6,
    故选A.
    本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<
    <6,题目比较好,难度不大.
    7、B
    【解析】
    从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.
    【详解】
    解:∵AB=2,BC=4,四边形ABCD是矩形,
    ∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,
    ∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.
    故选:B.
    本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M一定在BD上这一信息.
    8、A
    【解析】
    根据全等三角形的判定先求证△ADO≌△DEH,然后再根据等腰直角三角形中等边对等角求出∠ECH=45°,再根据点在一次函数上运动,作OE′⊥CE,求出OE′即为OE的最小值.
    【详解】
    解:如图,作EH⊥x轴于H,连接CE.
    ∵∠AOD=∠ADE=∠EHD=90°,
    ∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,
    ∴∠ADO=∠DEH,
    ∵AD=DE,
    ∴△ADO≌△DEH(AAS),
    ∴OA=DH=OC,OD=EH,
    ∴OD=CH=EH,
    ∴∠ECH=45°,
    ∴点E在直线y=x﹣3上运动,作OE′⊥CE,则△OCE′是等腰直角三角形,
    ∵OC=3,
    ∴OE′= ,
    ∴OE的最小值为 .
    故选:A.
    全等三角形的判定和性质、等腰三角形的性质和垂线段最短的公理都是本题的考点,熟练掌握基础知识并作出辅助线是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、众数
    【解析】
    根据题意可得:商场应该关注鞋的型号的销售量,特别是销售量最大的鞋型号即众数.
    【详解】
    某商场应该关注的各种鞋型号的销售量,特别是销售量最大的鞋型号,由于众数是数据中出现次数最多的数,故最应该关注的是众数.
    故答案为:众数.
    本题考查了统计的有关知识,主要包括平均数、中位数、众数和极差.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    10、4.8
    【解析】
    【分析】连接AP,由题意知四边形AFPE是矩形,由矩形的性质知EF=AP,所以当AP最小时,EF最小,根据垂线段最短进行解答即可.
    【详解】如图,连接AP,
    由题意知,四边形AFPE是矩形,则有AP=EF,
    当EF取最小值时,则AP也取最小值,
    ∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AP有最小值,此时EF有最小值,
    由勾股定理知BC==10,
    ∵S△ABC=AB•AC=BC•AP,
    ∴AP=4.8,
    即EF的最小值是4.8,
    故答案为:4.8.
    【点睛】本题考查了矩形的判定与性质、勾股定理、垂线段最短等,正确分析是解题的关键.
    11、1.
    【解析】
    过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.可得四边形ACFD是平行四边形,根据平行四边形的性质可得AD=CF,再判定△BDF是等腰直角三角形,根据等腰直角三角形的性质求出AH=BF解答.
    【详解】
    如图,过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.
    则四边形ACFD是平行四边形,
    ∴AD=CF,
    ∴AD+BC=BF,
    ∵梯形ABCD的中位线长是1,
    ∴BF=AD+BC=1×2=10.
    ∵AC=BD,AC⊥BD,
    ∴△BDF是等腰直角三角形,
    ∴AH=DE=BF=1,
    故答案为:1.
    本题考查了梯形的中位线,等腰直角三角形的判定与性质,平行四边形的判定与性质,梯形的问题关键在于准确作出辅助线.
    12、y=-x(k<0即可)
    【解析】
    根据A1(x1,y1),A2(x2,y2)满足x1<x2时,y1>y2判断出函数图象的增减性即可.
    【详解】
    解:∵A1(x1,y1),A2(x2,y2)满足x1<x2时,y1>y2,
    ∴函数y=kx(k≠0)满足k<0
    ∴y=-x(k<0即可);
    故答案为:y=-x(k<0即可).
    本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
    13、 (-,0)
    【解析】
    根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
    【详解】
    作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
    令y=x+4中x=0,则y=4,
    ∴点B的坐标为(0,4);
    令y=x+4中y=0,则x+4=0,解得:x=-6,
    ∴点A的坐标为(-6,0).
    ∵点C、D分别为线段AB、OB的中点,
    ∴点C(-3,1),点D(0,1).
    ∵点D′和点D关于x轴对称,
    ∴点D′的坐标为(0,-1).
    设直线CD′的解析式为y=kx+b,
    ∵直线CD′过点C(-3,1),D′(0,-1),
    ∴有,解得:,
    ∴直线CD′的解析式为y=-x-1.
    令y=-x-1中y=0,则0=-x-1,解得:x=-,
    ∴点P的坐标为(-,0).
    故答案为:(-,0).
    本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)点的坐标为
    【解析】
    (1)将代入中即可求解;
    (2)联立两函数即可求解.
    【详解】
    解:(1)将代入中,得:


    (2)联立,得
    ∴点的坐标为
    此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.
    15、1,2,3,4,5,6
    【解析】
    根据不等式的性质依次求出各不等式的解集,再求出公共解集,即可求解.
    【详解】

    解不等式①得x≥1,
    解不等式②得x<
    故不等式组的解集为1≤x<
    故整数解为1,2,3,4,5,6
    此题主要考查不等式的解集,解题的关键是熟知不等式的性质.
    16、2.
    【解析】
    根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.
    【详解】
    解:
    原式
    =2
    本题考核知识点:二次根式化简求值. 解题关键点:掌握乘法公式.
    17、(1)详见解析;(2)当点O运动到AC的中点时,四边形CEAF是矩形,理由详见解析;(3)1.
    【解析】
    (1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;
    (2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;
    (3)先根据勾股定理求出AC,得出△ACE的面积=AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=AB•AC,凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积,即可得出结果.
    【详解】
    (1)证明:∵EF∥BC,
    ∴∠OEC=∠BCE,
    ∵CE平分∠ACB,
    ∴∠BCE=∠OCE,
    ∴∠OEC=∠OCE,
    ∴EO=CO,
    同理:FO=CO,
    ∴EO=FO;
    (2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:
    由(1)得:EO=FO,
    又∵O是AC的中点,
    ∴AO=CO,
    ∴四边形CEAF是平行四边形,
    ∵EO=FO=CO,
    ∴EO=FO=AO=CO,
    ∴EF=AC,
    ∴四边形CEAF是矩形;
    (3)解:由(2)得:四边形CEAF是矩形,
    ∴∠AEC=90°,
    ∴AC===5,
    △ACE的面积=AE×EC=×3×4=6,
    ∵122+52=132,
    即AB2+AC2=BC2,
    ∴△ABC是直角三角形,∠BAC=90°,
    ∴△ABC的面积=AB•AC=×12×5=30,
    ∴凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积=30﹣6=1;
    故答案为1.
    本题考查了角平分线的概念,三角形的性质,矩形的判断以及四边形与几何动态综合,知识点综合性强,属于较难题型.
    18、(1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC.
    【解析】
    试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;
    (2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;
    (3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;
    (4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.
    试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;
    (2)仍成立.
    证明:如图2,连接AC、BD.
    由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;
    (3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.
    在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.
    又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;
    (4)O在移动过程中可形成直线AC.
    考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、答案为:乙 ;
    【解析】
    【分析】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
    【详解】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定;乙的方差比较小,所以乙的成绩比较稳定.
    故答案为乙
    【点睛】本题考核知识点:方差.解题关键点:理解方差的意义.
    20、
    【解析】
    只要运用求平均数公式:即可求得全班学生的平均身高.
    【详解】
    全班学生的平均身高是:.
    故答案为:1.
    本题考查的是样本平均数的求法.熟记公式是解决本题的关键.
    21、
    【解析】
    根据题意画出翻折后的图形,连接OE、DE,先证明△OED是等边三角形,再利用同底等高的三角形面积相等,说明S△AED=S△OED,作OF⊥ED于F,求出△OED的面积即可得出结果.
    【详解】
    解:如图,△AEC是△ABC沿AC翻折后的图形,连接OE、DE,
    ∵四边形ABCD是平行四边形,
    ∴OB=OD=BD=2,
    ∵△AEC是△ABC沿AC翻折后的图形,∠AOB=60º,
    ∴∠AOE=60º,OE=OB,
    ∴∠EOD=60º,OE=OD,
    ∴△OED是等边三角形,
    ∴∠DEO=∠AOE=60º,ED=OD=2,
    ∴ED∥AC,
    ∴S△AED=S△OED,
    作OF⊥ED于F,DF=ED=1,
    ∴OF==,
    ∴S△OED=ED·DF=
    ∴S△AED=.
    故答案为:.
    本题考查了图形的变换,平行四边形的性质,等边三角形的判定与性质,找到S△AED=S△OED是解题的关键.
    22、2, 1.
    【解析】
    根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
    【详解】
    解:直线是由直线向上平移 2个单位长度得到的一条直线.由直线向右平移 1个单位长度得到.
    故答案是:2;1.
    本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
    23、1
    【解析】
    根据点到x轴的距离是其纵坐标的绝对值解答即可.
    【详解】
    点P(﹣3,-1)到x轴的距离是其纵坐标的绝对值,所以点P(﹣3,-1)到x轴的距离为1.
    故答案为:1.
    本题考查了点的坐标的几何意义,明确点的坐标与其到x、y轴的距离的关系是解答本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)①1;②
    【解析】
    (1)先利用直线y=3x+3确定A、B的解析式,然后利用一次函数的性质求解;
    (2))①把C(-,n)代入y=3x+3可求出n的值;
    ②利用两直线垂直,一次项系数互为负倒数可设直线CD的解析式为y=-x+b,然后把C(-,1)代入求出b即可.
    【详解】
    解:(1)当y=0时,3x+3=0,解得x=-1,则A(-1,0),
    当x=0时,y=3x+3=3,则B(0,3),
    当0<y≤3,自变量x的取值范围是-1≤x<0;
    (2)①把C(-,n)代入y=3x+3得3×(-)+3=n,解得n=1;
    ②∵AB⊥CD,
    ∴设直线CD的解析式为y=-x+b,
    把C(-,1)代入得-×(-)+b=1,解得b=,
    ∴直线CD的解析式为y=-x+.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.
    25、 (1)x1=3,x2=6; (2) x1=2+,x2=2-.
    【解析】
    (1)利用因式分解法即可求解;
    (2)利用配方法解方程即可求解.
    【详解】
    (1)


    ∴,,
    解得:x1=3,x2=6;
    (2)

    ∴,
    ∴,
    解得x1=2+,x2=2-.
    此题分别考查了一元二次方程的几种解法,解题的关键是根据不同的方程的形式选择最佳方法解决问题.
    26、(1),;(2)甲公司有1名员工,乙公司有25名员工.
    【解析】
    (1)直接用配方法解一元二次方程即可;
    (2)设乙公司有x人,则甲公司有1.2x人,根据人均捐款钱数=捐款总钱数÷人数,结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.
    【详解】
    解:(1),
    ,;
    (2)解:设乙公司有x人,则甲公司有1.2x人,
    依题意,得:,
    解得:x=25,
    经检验,x=25是原分式方程的解,且符合题意,
    ∴1.2x=1.
    答:甲公司有1名员工,乙公司有25名员工.
    本题考查了解一元二次方程和分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    江西省赣州市兴国县2024-2025学年数学九上开学达标检测模拟试题【含答案】: 这是一份江西省赣州市兴国县2024-2025学年数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省赣州市会昌县2024-2025学年九上数学开学联考试题【含答案】: 这是一份江西省赣州市会昌县2024-2025学年九上数学开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省赣州市赣州七中学2024-2025学年数学九上开学统考模拟试题【含答案】: 这是一份江西省赣州市赣州七中学2024-2025学年数学九上开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map