江苏省镇江市宜城中学2025届数学九年级第一学期开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列变形正确的是( )
A.B.C.D.
2、(4分)如图,平行四边形ABCD的对角线相交于点O,且AD≠CD,过点0作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么平行四边形ABCD的周长是( )
A.8B.12C.16D.20
3、(4分)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为( )
A.4B.2C.3D.2
4、(4分)若分式 的值为0,则的值等于
A.0B.3C.-3D.3
5、(4分)下列命题中不正确的是( )
A.平行四边形是中心对称图形
B.斜边及一锐角分别相等的两直角三角形全等
C.两个锐角分别相等的两直角三角形全等
D.一直角边及斜边分别相等的两直角三角形全等
6、(4分)若有增根,则m的值是( )
A.3B.2C.﹣3D.﹣2
7、(4分)宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为( )
A.1.2×10﹣7米B.1.2×107米C.1.2×10﹣6米D.1.2×106米
8、(4分)已知四边形ABCD中,AB∥CD,添加下列条件仍不能判断四边形ABCD是平行四边形的是( )
A.AB=CDB.AD=BCC.AD∥BCD.∠A+∠B=180°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD于E.则△CDE的周长为_____cm.
10、(4分)如图,某公司准备和一个体车主或一民营出租车公司中的一家签订月租车合同,设汽车每月行驶,个体车主收费为元,民营出租车公司收费为元,观察图像可知,当_________时,选用个体车主较合算.
11、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
12、(4分)如图,经过平移后得到,下列说法错误的是( )
A.B.
C.D.
13、(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.
EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
15、(8分)端午节前夕,小东妈妈准备购买若干个粽子和咸鸭蛋(每个棕子的价格相同,每个咸鸭蛋的价格相同).已知某超市粽子的价格比咸鸭蛋的价格贵1.8元,小东妈妈发现,花30元购买粽子的个数与花12元购买的咸鸭蛋个数相同.
(1)求该超市粽子与咸鸭蛋的价格各是多少元?
(2)小东妈妈计划购买粽子与咸鸭蛋共18个,她的一张购物卡上还有余额40元,若只用这张购物卡,她最多能购买粽子多少个?
16、(8分)
17、(10分)在平面直角坐标系中,直线l经过点A(﹣1,﹣4)和B(1,0),求直线l的函数表达式.
18、(10分)如图,在白纸上画两条长度均为且夹角为的线段、,然后你把一支长度也为的铅笔放在线段上,将这支铅笔以线段上的一点为旋转中心旋转顺时针旋转一周.
图 ① 图 ②
(1)若与重合,当旋转角为______时,这支铅笔与线段、围成的三角形是等腰三角形.
(2)点从逐渐向移动,记:
①若,当旋转角为、______、______、______、、______时这支铅笔与线段、共围成6个等腰三角形.
②当这支铅笔与线段、正好围成5个等腰三角形时,求的取值范围.
③当这支铅笔与线段、正好围成3个等腰三角形时,直接写出的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若是一元二次方程的解,则代数式的值是_______
20、(4分)图1是一个地铁站人口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的边缘,且与闸机侧立面夹角.当双翼收起时,可以通过闸机的物体的最大宽度为______
21、(4分)如图,在一张长为7cm,宽为5cm的矩形纸片上,现在剪下一个腰长为4cm的等腰三角形,要求等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上,则剪下的等腰三角形一腰上的的高为_____________.
22、(4分)计算或化简
(1) (2)
23、(4分)某汽车在某一直线道路上行驶,该车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE).
根据图中提供的信息,给出下列四种说法:
①汽车共行驶了120千米;
②汽车在行驶途中停留了0.5小时;
③汽车在行驶过程中的平均速度为千米/小时;
④汽车自出发后3小时至4.5小时之间行驶的速度不变.
其中说法正确的序号分别是_____(请写出所有的).
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线l 在平面直角坐标系中,直线l与y轴交于点A,点B(-3,3)也在直线1上,将点B先向右平移1个单位长度、再向下平移2个单位长度得到点C,点C恰好也在直线l上.
(1)求点C的坐标和直线l的解析式
(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l上;
(3)已知直线l:y=x+b经过点B,与y轴交于点E,求△ABE的面积.
25、(10分)如图,以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接BE、DF.
(1)当四边形ABCD为正方形时(如图1),则线段BE与DF的数量关系是 .
(2)当四边形ABCD为平行四边形时(如图2),问(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.
26、(12分)已知,如图,在平面直角坐标系中,直线分别交轴、轴于点、两点,直线过原点且与直线相交于,点为轴上一动点.
(1)求点的坐标;
(2)求出的面积;
(3)当的值最小时,求此时点的坐标;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
依据分式的基本性质进行判断,即可得到结论.
【详解】
解:A. ,故本选项错误;
B. ,故本选项错误;
C. ,故本选项正确;
D. ,故本选项错误;
故选:C.
本题考查分式的基本性质,分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
2、C
【解析】
先证明MO为AC的线段垂直平分线,则MC=AM,依次通过△CDM周长值可得AD+DC值,则平行四边形周长为2(AD+DC).
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=CO.
∵OM⊥AC,
∴MA=MC.
∴△CDM周长=MD+MC+CD=MD+MA+CD=AD+DC=1.
∴平行四边形ABCD周长=2(AD+DC)=2.
故选:C.
本题考查了平行四边形的性质、线段垂直平分线的性质,解决平行四边形周长问题一般是先求解两邻边之和.
3、C
【解析】
过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角.在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=×BC×DF.
【详解】
过D点作BE的垂线,垂足为F,
∵∠ABC=30°,∠ABE=150°,
∴∠CBE=∠ABC+∠ABE=180°.
在Rt△ABC中,∵AB=4,∠ABC=30°,∴AC=2,BC=2,
由旋转的性质可知:BD=BC=2,DE=AC=2,BE=AB=4,
由DF×BE=BD×DE,即DF×4=2×2,
解得:DF=,
S△BCD=×BC×DF=×2×=3(cm2).
故选C.
本题考查了旋转的性质,解直角三角形的方法,解答本题的关键是围绕求△BCD的面积确定底和高的值,有一定难度.
4、C
【解析】
根据分式的值为零,则分子为零分母不为零,进而得出答案.
【详解】
解:∵分式的值为0,
∴x2−9=0,x−1≠0,
解得:x=−1.
故选:C.
此题主要考查了分式的值为零的条件,正确记忆分子与分母的关系是解题关键.
5、C
【解析】
解:A.平行四边形是中心对称图形,说法正确;
B.斜边及一锐角分别相等的两直角三角形全等,说法正确;
C.两个锐角分别相等的两直角三角形全等,说法错误;
D.一直角边及斜边分别相等的两直角三角形全等,说法正确.
故选C.
6、A
【解析】
先把分式方程化为整式方程得到m+1﹣x=0,再利用分母为0得到方程的增根为4,然后把x=4代入m+1﹣x=0中求出m即可.
【详解】
去分母得:m+1﹣x=0,方程的增根为4,把x=4代入m+1﹣x=0得:m+1﹣4=0,解得:m=1.
故选A.
本题考查了分式方程的增根:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.
7、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
解:0.00000012米=1.2×10﹣7米,故答案为A。
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
8、B
【解析】
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
【详解】
解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.
故选B.
此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、13.
【解析】
利用垂直平分线性质得到AE=EC,△CDE的周长为ED+DC+EC=AE+ED+DC,为平行四边形周长的一半,故得到答案
【详解】
利用平行四边形性质得到O为AC中点,又有OE⊥AC,所以EO为AC的垂直平分线,故AE=EC,所以△CDE的周长为ED+DC+EC=AE+ED+DC=AD+CD,即为平行四边形周长的一半,得到△CDE周长为26÷2=13cm,故填13
本题主要考查垂直平分性性质,平行四边形性质等知识点,本题关键在于能够找到OE为垂直平分线
10、
【解析】
选用个体车较合算,即对于相同的x的值,y1对应的函数值较小,依据图象即可判断.
【详解】
解:根据图象可以得到当x>1500千米时,y1<y2,则选用个体车较合算.
故答案为
此题为一次函数与不等式的简单应用,搞清楚交点意义和图象的相对位置是关键.
11、y=2x+1.
【解析】
用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
【详解】
解:把(﹣1,2),(0,1)分别代入y=kx+b得,
,
解得,
所以,y=2x+1.
故答案为y=2x+1.
本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
12、D
【解析】
根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.
【详解】
A、AB∥DE,正确;
B、,正确;
C、AD=BE,正确;
D、,故错误,
故选D.
本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.
13、
【解析】
∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,
∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:.
考点:概率公式.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)3
【解析】
试题分析:(1)要证明△EDM∽△FBM成立,只需要证DE∥BC即可,而根据已知条件可证明四边形BCDE是平行四边形,从而可证明相似;
(2)根据相似三角形的性质得对应边成比例,然后代入数值计算即可求得线段的长.
试题解析:(1)证明:∵AB="2CD" , E是AB的中点,∴BE=CD,又∵AB∥CD,∴四边形BCDE是平行四边形,∴BC∥DE, BC=DE,∴△EDM∽△FBM;
(2)∵BC=DE, F为BC的中点,∴BF=DE,∵△EDM∽△FBM,∴,∴BM=DB,又∵DB=9,∴BM=3.
考点:1. 梯形的性质;2. 平行四边形的判定与性质;3. 相似三角形的判定与性质.
15、(1)咸鸭蛋的价格为1.2元,粽子的价格为3元(2)她最多能购买粽子10个
【解析】
(1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.
(2)设小东妈妈能购买粽子y个,根据题意列出不等式解答即可.
【详解】
(1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,
根据题意得:,
去分母得:30x=12x+21.6,
解得:x=1.2,
经检验x=1.2是分式方程的解,且符合题意,
1.8+x=1.8+1.2=3(元),
故咸鸭蛋的价格为1.2元,粽子的价格为3元.
(2)设小东妈妈能购买粽子y个,根据题意可得:3y+1.2(18﹣y)≤40,
解得:y≤,
因为y取整数,
所以y的最大值为10,
答:她最多能购买粽子10个
此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.航行问题常用的等量关系为:花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同.
16、3
【解析】
试题分析:利用平方差公式展开和二次根式的乘除法则运算;然后合并即可.
试题解析:原式=7-5+3-2
=2+1
=3.
17、.
【解析】
根据待定系数法,可得一次函数解析式.
【详解】
解:设直线的表达式为,
依题意,得
解得:.
所以直线的表达式为.
本题考查了待定系数法求一次函数的解析式,熟练掌握待定系数法是解题关键.
18、(1)或;(2)①、、、;②;③
【解析】
(1)运用旋转的性质作答即可;
(2)①对旋转的各个位置进行讨论,即可完成解答; 当旋转,,时,这段与、三次围成等腰三角形,这样正好围成6个等于三角形分类讨论即可;
【详解】
解:(1)当已知的30°角为底角,那么旋转30°即可;
当已知的30°角为顶角,那么旋转75°即可;
故答案为或.
(2)①t=1,即P为AB的中点:
当已知的30°角为底角,那么30°、120°、210°、300°即可;
当已知的30°角为顶角,那么旋转75°、255°即可;
故答案为:、、、
②如图1,位于中点时,分成了、两段,以点为旋转中心将其旋转,,时,这段与、三次围成等腰三角形,当旋转,,时这段与、三次围成等腰三角形,这样正好围成6个等于三角形,此时.
如图2,当旋转时,当(起初与重合的)正好与等长,即时,当旋转,,时较长的这段与、三次围成等腰三角形,当旋转,时较短的这段与、两次围成等腰三角形,
如图,,,,令,则,,易知,,,
此时可求得,,,
故旋转形成5个等腰三角形时,.
③如图:
当时,3个 , 当时,4个 ,
可求得.
注:时可这样求解,如下图
在上取,使,则,,令,
则,,,,
本题属于一道旋转的几何综合题,难度较大,解答的关键在于对旋转的不同位置的分类讨论.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-3
【解析】
将代入到中即可求得的值.
【详解】
解:是一元二次方程的一个根,
,
.
故答案为:.
此题主要考查了一元二次方程的解(根的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
20、
【解析】
过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,根据含30度角的直角三角形的性质即可求出AE与BF的长度,然后求出EF的长度即可得出答案.
【详解】
解:过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,
∵AC=56,∠PCA=30°,
由对称性可知:BF=AE,
∴通过闸机的物体最大宽度为2AE+AB=56+10=66;
故答案为:66cm.
本题考查解直角三角形,解题的关键是熟练运用含30度的直角直角三角形的性质,本题属于基础题型.
21、4或或
【解析】
分三种情况进行讨论:(1)△AEF为等腰直角三角形,得出AE上的高为AF=4;
(2)利用勾股定理求出AE边上的高BF即可;
(3)求出AE边上的高DF即可
【详解】
解:分三种情况:
(1)当AE=AF=4时,
如图1所示:
△AEF的腰AE上的高为AF=4;
(2)当AE=EF=4时,
如图2所示:
则BE=5-4=1,
BF=;
(3)当AE=EF=4时,
如图3所示:
则DE=7-4=3,
DF=,
故答案为4或或.
本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.
22、(1);
【解析】
(1)根据根式的计算法则计算即可.
(2)采用平方差公式计算即可.
【详解】
(1)原式
(2)原式
本题主要考查根式的计算,这是必考题,应当熟练掌握.
23、②④
【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
【详解】
解:由图象可知,
汽车共行驶了:120×2=240千米,故①错误,
汽车在行驶图中停留了2﹣1.5=0.5(小时),故②正确,
车在行驶过程中的平均速度为:千米/小时,故③错误,
汽车自出发后3小时至4.5小时之间行驶的速度不变,故④正确,
故答案为:②④.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
二、解答题(本大题共3个小题,共30分)
24、(1)(-2,1),y=-2x-3(2)点D在直线l上,理由见解析(3)13.5
【解析】
(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程
(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可
(3)根据点B的坐标求得直线l的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答
【详解】
(1)∵B(-3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,
∴-3+1=-2,3-2=1,
∴C的坐标为(-2,1)
设直线l的解析式为y=kx+c,
∵点B,C在直线l上
代入得
解得k=-2,c=-3,
∴直线l的解析式为y=-2x-3
(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(-2,1),
∴-2-3=-5,1+6=7
∴D的坐标为(-5,7)
代入y=-2x-3时,左边=右边,
即点D在直线l上
(3)把B的坐标代入y=x+b得:3=-3+b,
解得:b=6
∴y=x+6,
∴E的坐标为(0,6),
∵直线y=-2x-3与y轴交于A点,
∴A的坐标为(0,-3)
∴AE=6+3=9;
∵B(-3,3)
∴△ABE的面积为×9×|-3|=13.5
此题考查一次函数图象与几何变换,利用平移的性质是解题关键
25、(1)BE=DF(或相等);(2)成立.证明见解析.
【解析】
(1)根据正方形的性质和等边三角形性质得:AB=AD,∠BAD=90°,AF=AB,AE=AD,∠BAF=∠DAE=60°,再根据全等三角形判定和性质即可.
(2)先利用平行四边形性质和等边三角形性质,再运用全等三角形判定和性质即可.
【详解】
解:(1)BE=DF(或相等)如图1,
∵四边形ABCD为正方形
∴AB=AD,∠BAD=90°
∵△ABF、△ADE都是等边三角形
∴AF=AB,AE=AD,∠BAF=∠DAE=60°
∴∠BAE=∠BAD+∠DAE=150°,∠DAF=∠BAD+∠BAF=150°
∴∠BAE=∠DAF
∵AB=AF=AE=AD
∴△ABE≌△AFD(SAS)
∴BE=DF
故答案为BE=DF或相等;
(2)成立.
证明:如图2,
∵△AFB为等边三角形
∴AF=AB,∠FAB=60°
∵△ADE为等边三角形,
∴AD=AE,∠EAD=60°
∴∠FAB+∠BAD=∠EAD+∠BAD,
即∠FAD=∠BAE.
在△AFD和△ABE中,
,
∴△AFD≌△ABE(SAS),
∴BE=DF.
本题考查了正方形、平行四边形、等边三角形、全等三角形的判定与性质;解题时要熟练掌握和运用所学性质定理和判定定理.
26、 (1)点;(2);(3)点.
【解析】
(1)联立两直线解析式组成方程组,解得即可得出结论;
(2)将代入,求出OB的长,再利用 (1)中的结论点,即可求出的面积;
(3)先确定出点A关于y轴的对称点A',即可求出PA+PC的最小值,再用待定系数法求出直线A'C的解析式即可得出点P坐标.
【详解】
解:(1)∵直线l1:y=x+3与直线l2:y=-3x相交于C,
∴
解得:
∴点;
(2) ∵把代入,
解得:,
∴,
又∵点,
∴
;
(3) 如图,作点A(-3,0)关于y轴的对称点A'(3,0),
连接CA'交y轴于点P,此时,PC+PA最小,
最小值为CA'=,
由(1)知,,
∵A'(3,0),
∴直线A'C的解析式为,
∴点.
此题是一次函数综合题,主要考查了函数图象的交点坐标的求法,极值的确定,用分类讨论的思想和方程(组)解决问题是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
江苏省镇江市丹阳实验中学2024-2025学年数学九上开学经典模拟试题【含答案】: 这是一份江苏省镇江市丹阳实验中学2024-2025学年数学九上开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。
江苏省淮安市涟水实验中学2025届数学九年级第一学期开学经典模拟试题【含答案】: 这是一份江苏省淮安市涟水实验中学2025届数学九年级第一学期开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省镇江市镇江中学数学九年级第一学期开学联考模拟试题【含答案】: 这是一份2025届江苏省镇江市镇江中学数学九年级第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。