江苏省镇江市京口中学2024年数学九年级第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各点中,在第四象限的点是( )
A.(2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣2,3)
2、(4分)如图,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是( )
A.12cm≤h≤19cmB.12cm≤h≤13cmC.11cm≤h≤12cmD.5cm≤h≤12cm
3、(4分)已知y-3与x成正比例,且x=2时,y=7,则y与x的函数关系式为( )
A.y=2x+3B.y=2x-3C.y-3=2x+3D.y=3x-3
4、(4分)如图,在中,,以顶点为圆心,适当长为半径画弧,分别交边于点,现分别以为圆心,以大于的长为半径画弧,两弧交于点,作射线交边于点,若则的面积是( )
A.10B.20C.30D.40
5、(4分)若,则下列不等式成立的是( )
A.B.C.D.
6、(4分)下列图形是中心对称图形的是( )
A.B.
C.D.
7、(4分)下列说法中,正确的是( )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线相等的平行四边形是矩形
D.对角线互相垂直的平行四边形是矩形
8、(4分)若 A(,)、B(,)是一次函数 y=(a-1)x+2 图象上的不同的两个点,当>时,<,则 a 的取值范围是( )
A.a>0B.a<0C.a>1D.a<1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若a<0,则化简的结果为__________.
10、(4分)如图,一次函数的图象经过点,则关于的一元一次方程的解为___________.
11、(4分)如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行
先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.
(1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是 .
(2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是 .
12、(4分)二次根式中,x的取值范围是________.
13、(4分)如图,F是△ABC内一点,BF平分∠ABC且AF⊥BF,E是AC中点,AB=6,BC=8,则EF的长等于____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形ABCD中,,,E是AB上一点,连接CE,现将向上方翻折,折痕为CE,使点B落在点P处.
(1)当点P落在CD上时,_____;当点P在矩形内部时,BE的取值范围是_____.
(2)当点E与点A重合时:①画出翻折后的图形(尺规作图,保留作图痕迹);②连接PD,求证:;
(3)如图,当点Р在矩形ABCD的对角线上时,求BE的长.
15、(8分)如图,在中,,,.点从点出发沿方向以每秒个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒().过点作于点,连接、.
(1)的长是 ,的长是 ;
(2)在、的运动过程中,线段与的关系是否发生变化?若不变化,那么线段与是何关系,并给予证明;若变化,请说明理由.
(3)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,说明理由.
16、(8分)如图,正方形的边长为2, 边在轴上, 的中点与原点重合,过定点与动点的直线记作.
(1)若的解析式为,判断此时点是否在直线上,并说明理由;
(2)当直线与边有公共点时,求的取值范围.
17、(10分)九年一班竞选班长时,规定:思想表现、学习成绩、工作能力三个方面的重要性之比为3:3:1.请根据下表信息,确定谁会被聘选为班长:
18、(10分)如图,在平面直角坐标系中,四边形为正方形,已知点、,点、在第二象限内.
(1)点的坐标___________;
(2)将正方形以每秒个单位的速度沿轴向右平移秒,若存在某一时刻,使在第一象限内点、两点的对应点、正好落在某反比例函数的图象上,请求出此时的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)线段、正三角形,平行四边形、菱形中,只是轴对称图形的是_________.
20、(4分)已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为____.
21、(4分)在一列数2,3,3,5,7中,他们的平均数为__________.
22、(4分)在菱形ABCD中,E为AB的中点,OE=3,则菱形ABCD的周长为.
23、(4分)如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:
设每天生产A种购物袋x个,每天共获利y元.
(1)求y与x的函数解析式;
(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?
25、(10分)解方程:(1)2x 2+4x+2=0; (2) x 2 x 4 0
26、(12分)自中央出台“厉行节约、反对浪费”八项规定后,某品牌高档酒销量锐减,进入四月份后,经销商为扩大销量,每瓶酒比三月份降价500元,如果卖出相同数量的高档酒,三月份销售额为4.5万元,四月份销售额只有3万元.
(1)求三月份每瓶高档酒售价为多少元?
(2)为了提高利润,该经销商计划五月份购进部分大众化的中低档酒销售.已知高档酒每瓶进价为800元,中低档酒每瓶进价为400元.现用不超过5.5万元的预算资金购进,两种酒共100瓶,且高档酒至少购进35瓶,请计算说明有几种进货方案?
(3)该商场计划五月对高档酒进行促销活动,决定在四月售价基础上每售出一瓶高档酒再送顾客价值元的代金券,而中低档酒销售价为550元/瓶.要使(2)中所有方案获利恰好相同,请确定的值,并说明此时哪种方案对经销商更有利?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据第四象限的点的横坐标是正数,纵坐标是负数解答.
【详解】
解:纵观各选项,第四象限的点是(2,﹣3).
故选:C.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、C
【解析】
先根据题意画出图形,再根据勾股定理解答即可.
【详解】
当筷子与杯底垂直时h最大,h最大=24-12=12cm.
当筷子与杯底及杯高构成直角三角形时h最小,
如图所示:此时,AB= =13cm,
故h=24-13=11cm.
故h的取值范围是11cm≤h≤12cm.
故选C.
此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.
3、A
【解析】
用待定系数法可求出函数关系式.
【详解】
y-1与x成正比例,即:y=kx+1,
且当x=2时y=7,则得到:k=2,
则y与x的函数关系式是:y=2x+1.
故选:A.
此题考查了待定系数法求一次函数解析式,利用正比例函数的特点以及已知条件求出k的值,写出解析式.
4、B
【解析】
根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DE,再由三角形的面积公式可得出结论.
【详解】
由题意可知AP为∠CAB的平分线,过点D作DE⊥AB于点E,
∵∠C=90°,CD=1,
∴CD=DE=1.
∵AB=10,
∴S△ABD=AB•DE=×10×1=2.
故选B.
本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
5、B
【解析】
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A错误,其余选型根据不等式的性质判定即可.
【详解】
A: a>b,则a-5>b-5,故A错误;
B:a>b, -a<-b,则-2a<-2b, B选项正确.
C:a>b, a+3>b+3,则>,则C选项错误.
D:若0>a>b时,a2<b2,则D选项错误.
故选B
本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.
6、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误.
故选:C.
本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7、C
【解析】
根据菱形和矩形的判定定理即可得出答案.
【详解】
解:A. 对角线相等的平行四边形是矩形,所以A错误;
B. 对角线互相垂直的平行四边形是菱形,所以B错误;
C. 对角线相等的平行四边形是矩形,所以C正确;
D. 对角线互相垂直的平行四边形是菱形,所以D错误;
故选C.
本题考查特殊平行四边形中菱形与矩形的判定,注意区分特殊平行四边形的判定方法是解题关键.
8、D
【解析】
根据一次函数的图象y=(a-1)x+2,当a-1<0时,y随着x的增大而减小分析即可.
【详解】
解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a-1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,
可得:a-1<0,
解得:a<1.
故选D.
本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k>0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-a
【解析】
直接利用二次根式的化简的知识求解即可求得答案.
【详解】
∵a<0,∴=|a|=﹣a.
故答案为﹣a.
本题考查了二次根式的化简.注意=|a|.
10、
【解析】
所求方程的解,即为函数y=kx+b图象与x轴交点横坐标,确定出解即可.
【详解】
解:方程kx+b=0的解,即为函数y=kx+b图象与x轴交点的横坐标,
∵直线y=kx+b过B(-1,0),
∴方程kx+b=0的解是x=-1,
故答案为:x=-1.
此题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为kx+b=0 (k,b为常数,k≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=kx+b确定它与x轴的交点的横坐标的值.
11、【答题空1】两组对边分别相等的四边形是平行四边形
【答题空2】有一个角是直角的平行四边形是矩形
【解析】
(1)∵AB=CD,EF=GH,
∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)
(2)由(2)知四边形为平行四边形,
∵∠C为直角,
∴四边形为矩形.(一个角为直角的平行四边形为矩形)
根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.
12、
【解析】
根据二次根式有意义的条件进行求解即可得.
【详解】
根据题意,得
,
解得,,
故答案为:.
本题考查了二次根式有意义的条件,熟练掌握“式子叫二次根式、二次根式中的被开方数必须是非负数”是解题的关键.
13、1.
【解析】
根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=4,由EF=DE-DF可得答案.
【详解】
∵AF⊥BF,
∴∠AFB=90°,
∵AB=6,D为AB中点,
∴DF=AB=AD=BD=3,
∴∠ABF=∠BFD,
又∵BF平分∠ABC,
∴∠ABF=∠CBF,
∴∠CBF=∠DFB,
∴DE∥BC,
∴△ADE∽△ABC,
∴,即
解得:DE=4,
∴EF=DE-DF=1,
故答案为:1.
本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)12,0<BE<12;(2)①见解析,②见解析;(3)2或1.
【解析】
(1)由折叠的性质得到推出△BCE是等腰直角三角形,即可得到结论;
(2)①由题意画出图形即可;
②根据全等三角形的性质得到∠PAC=∠DCA,设AP与CD相交于O,于是得到OA=OC,求得∠OAC=∠OPD,根据平行线的判定定理得到结论;
(3)分两种情形,当点P在对角线AC或对角线BD上时,两种情形分别求解即可.
【详解】
解:(1)当点P在CD上时,如图1,
∵将∠B向右上方翻折,折痕为CE,使点B落在点P处,
∴∠BCE=∠ECP=45°,
∴△BCE是等腰直角三角形,
∴BE=BC=AD=12,
当点P在矩形内部时,BE的取值范围是0<BE<12;
故答案为:12,0<BE<12;
(2)①补全图形如图2所示,
②当点E与点A重合时,如图3,连接PD,设CD交PA于点O.
由折叠得,AB=AP=CD,
在△ADC与△CPA中, ,
∴△ADC≌△CPA,
∴∠PAC=∠DCA,
设AP与CD相交于O,则OA=OC,
∴OD=OP,∠ODP=∠OPD,
∵∠AOC=∠DOP,
∴∠OAC=∠OPD
∴PD∥AC;
(3)如图4中,当点P落在对角线AC上时,
由折叠得,BC=PC=12,AC= =20,
∴PA=8,设BE=PE=x,
在Rt△APE中,(12-x)2=x2+82,
解得x=2.
∴BE=2.
如图5中,当点P落在对角线BD上时,设BD交CE于点M.
由折叠得,BE=PE,∠BEC=∠PEC,
∵EM=EM,
∴△MBE∽△MEP,
∴∠EMB=∠EMP,
∵∠EMB+∠EMP=180°,
∴EC⊥BD,
∴∠BCE=∠ABD,
∵∠A=∠ABC=10°,
∴△CBE∽△BAD,
∴ ,
∴ ,
∴BE=1,
综上所述,满足条件的BE的值为2或1.
本题属于四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理折叠的性质,等腰直角三角形的性质等知识,解题的关键是学会用分类讨论的思想解决问题.
15、(1),;(2)与平行且相等;(3)当时,四边形为菱形
【解析】
(1)在Rt△ABC中,∠C=30°,则AC=2AB,根据勾股定理得到AC和AB的值.
(2)先证四边形AEFD是平行四边形,从而证得AD∥EF,并且AD=EF,在运动过程中关系不变.
(3)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得.
【详解】
(1)解:在中,,,
根据勾股定理得:,,
,;
(2)与平行且相等.
证明:在中,,,,.
又,.,,.四边形为平行四边形.
与平行且相等.
(3)解:能;
理由如下:,,.
又,四边形为平行四边形.
,,.
若使平行四边形为菱形,则需,即,解得:.
即当时,四边形为菱形.
本题考查勾股定理、菱形的判定及平行四边形的判定与性质,解题的关键是掌握勾股定理的使用、菱形的判定及平行四边形的判定与性质.
16、(1)点在直线上,见解析;(2)的取值范围是.
【解析】
(1)把点A代入解析式,进而解答即可;
(2)求出直线经过点时的解析式,可知此时t的值,再根据(1)中解析式t的值可得取值范围.
【详解】
解:(1)此时点在直线上,
∵正方形的边长为2
∴
∵点为中点,
∴点,,
把点的横坐标代入解析式,得,等于点的纵坐标为2.
∴此时点在直线上.
(2)由题意可得,点及点,
当直线经过点时,设的解析式为()
∴解得
∴的解析式为.
当时,
又由,可得当时,
∴当直线与边有公共点时,的取值范围是.
本题考查了一次函数的性质,一次函数图象上点的坐标特征,正方形的性质,掌握判断点是否在直线上的方法以及利用待定系数法求解析式是解题的关键.
17、小明会被聘选为班长.
【解析】
分别求出两人的加权平均数,再进行比较,即可完成解答。
【详解】
解:小明的成绩=91×0.3+96×0.3+98×0.1=96.2(分);
小英的成绩=98×0.3+96×0.3+91×0.1=95.8(分);
∵96.2>95.8,
∴小明会被聘选为班长.
本题考查了加权平均数的实际应用,解题的关键在于能够联系实际生活,正确应用所学知识。
18、(1)点坐标为;(2),;(3)存在,,或,或,
【解析】
(1)证明△DFA≌△AEB(AAS),则DF=AE=3,BE=AF=1,即可求解;
(2)t秒后,点D′(−7+2t,3)、B′(−3+2t,1),则k=(−7+2t)×3=(−3+2t)×1,即可求解;
(3)分为平行四边形的一条边时和为平行四边形对角线时两种情况,分别求解即可.
【详解】
解:(1)过点、分别作轴、轴交于点、,
,,,
又,,,,,
点坐标为;
(2)秒后,点、,
则,解得:,则,
(3)存在,理由:
设:点,点,,
①在第一象限,且为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,
同理点向左平移个单位、向上平移个单位为得到点,即:,,,
解得:,,,
故点、点;
②在第一象限,且当为平行四边形对角线时,图示平行四边形,中点坐标为,
该中点也是的中点,
即:,,,
解得:,,,
故点、;
③在第三象限,且当为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,
同理点向右平移个单位、向下平移个单位为得到点,即:,,,
解得:,,,
故点、点;
综上:,或,或,
本题考查的是反比例函数综合运用,涉及到三角形全等、图形平移等知识点,其中(3),要通过画图确定图形可能的位置再求解,避免遗漏.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、正三角形
【解析】
沿着一条直线对折,图形两侧完全重合的是轴对称图形,绕着某一点旋转180°后能与原图形重合的是中心对称图形,根据定义逐个判断即可.
【详解】
线段既是轴对称图形,又是中心对称图形;
正三角形是轴对称图形,不是中心对称图形;
平行四边形不是轴对称图形,是中心对称图形;
菱形既是轴对称图形,又是中心对称图形;
只是轴对称图形的是正三角形,
故答案为:正三角形.
本题考查轴对称图形与中心对称图形的判断,熟练掌握定义是解题的关键.
20、4
【解析】
根据平均数的定义求出x的值,再根据极差的定义解答.
【详解】
1+2+0-1+x+1=1×6,所以x=3,
则这组数据的极差=3-(-1)=4,
故答案为:4.
本题考查了算术平均数、极差,熟练掌握算术平均数、极差的概念以及求解方法是解题的关键.
21、1
【解析】
直接利用算术平均数的定义列式计算可得.
【详解】
解:这组数据的平均数为=1,
故答案为:1.
本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.
22、1.
【解析】
试题分析:根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线等于第三边的一半求出AD,然后根据菱形的周长进行计算即可得解.
解:在菱形ABCD中,OB=OD,
∵E为AB的中点,
∴OE是△ABD的中位线,
∵OE=3,
∴AD=2OE=2×3=6,
∴菱形ABCD的周长为4×6=1.
故答案为1.
考点:菱形的性质.
23、1
【解析】
因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.
【详解】
解:易证△AFD′≌△CFB,
∴D′F=BF,
设D′F=x,则AF=16-x,
在Rt△AFD′中,(16-x)2=x2+82,
解之得:x=6,
∴AF=AB-FB=16-6=10,
故答案为:1.
本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1) ;(2)2400元.
【解析】
(1)根据题意可得A种塑料袋每天获利(2.4-2)x,B种塑料袋每天获利(3.6-3)(5000-x),共获利y元,列出y与x的函数关系式:y=(2.4-2)x+(3.6-3)(5000-x).
(2)根据题意得2x+3(4500-x)≤10000,解出x的范围.得出y随x增大而减小.
【详解】
(1)由题意得:=
(2)由题意得:≤12000
解得:≥3000
在函数中,<0
∴随的增大而减小
∴当=3000时,每天可获利最多,最大利润=2400
∴该厂每天最多获利2400元.
此题主要考查了一次函数的应用以及不等式组解法,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
25、(1);(2).
【解析】
(1)方程两边同时除以2,得x 2+2x+1=0,再按完全平方公式求解;
(2)方程两边同时乘以2,得x 2-2 x-8=0,再用分解因式法或公式法求解.
【详解】
解:(1)方程两边同时除以2,得x 2+2x+1=0,
∴.
∴x1=x2=-1.
(2)方程两边同时乘以2,得x 2-2x-8=0,
∴(x-4)(x+2)=0.
∴x1=4,x2=-2.
本题考查了一元二次方程的解法,对于(1)题,用完全平方公式法要简单,对于(2)题,用公式法和分解因式法都可以,但分解因式法要简单些,所以对于单纯的解方程题目,要先观察,确定较为简捷的解法,再动手求解.
26、(1)三月份每瓶高档酒售价为1500元;(2)有三种进货方案,分别为:①购进种酒35瓶,种酒65瓶,②购进种酒36瓶,种酒64瓶,③购进种酒37瓶,种酒63瓶;(3),种酒越少,所用进货款就越少,在利润相同的情况下,选择方案①对经销商更有利.
【解析】
(1)设三月份每瓶高档酒A售价为x元,然后根据三、四月卖出相同数量列出方程,求解即可;
(2)设购进A种酒y瓶,表示出B种酒为(100-y)瓶,再根据预算资金列出不等式组,然后求出y的取值范围,再根据y是正整数设计方案;
(3)设购进A种酒y瓶时利润为w元,然后列式整理得到获利表达式,再根据所有方案获利相等列式计算即可得解.
【详解】
解:(1)设三月份每瓶高档酒售价为元,
由题意得,
解得,
经检验,是原方程的解,且符合题意,
答:三月份每瓶高档酒售价为1500元;
(2)设购进种酒瓶,则购进种酒为(100-y)瓶,
由题意得,
解得,
∵为正整数,
∴、、,
∴有三种进货方案,分别为:
①购进种酒35瓶,种酒65瓶,
②购进种酒36瓶,种酒64瓶,
③购进种酒37瓶,种酒63瓶;
(3)设购进种酒瓶时利润为元,
则四月份每瓶高档酒售价为元,
,
,
∵(2)中所有方案获利恰好相同
∴,
解得.
∵
∴种酒越少,所用进货款就越少,在利润相同的情况下,选择方案①对经销商更有利.
此题考查二元一次方程组的应用,一元一次不等式组的应用,解题关键在于列出方程
题号
一
二
三
四
五
总分
得分
小明
小英
思想表现
91
98
学习成绩
96
96
工作能力
98
91
成本(元/个)
售价 (元/个)
2
2.4
3
3.6
江苏省扬州教育院附属中学2024年九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份江苏省扬州教育院附属中学2024年九年级数学第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省姜堰市张甸初级中学2025届数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份江苏省姜堰市张甸初级中学2025届数学九年级第一学期开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省盐城市獐沟中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2025届江苏省盐城市獐沟中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。