终身会员
搜索
    上传资料 赚现金

    江苏省镇江市名校2025届九年级数学第一学期开学质量跟踪监视试题【含答案】

    立即下载
    加入资料篮
    江苏省镇江市名校2025届九年级数学第一学期开学质量跟踪监视试题【含答案】第1页
    江苏省镇江市名校2025届九年级数学第一学期开学质量跟踪监视试题【含答案】第2页
    江苏省镇江市名校2025届九年级数学第一学期开学质量跟踪监视试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省镇江市名校2025届九年级数学第一学期开学质量跟踪监视试题【含答案】

    展开

    这是一份江苏省镇江市名校2025届九年级数学第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是( )
    A.AB=CDB.AC=BDC.AC⊥BDD.AD=BC
    2、(4分)方程的解为( ).
    A.2B.1C.-2D.-1
    3、(4分)将一元二次方程-6x-5=0化成=b的形式,则b等于( )
    A.4B.-4C.14D.-14
    4、(4分)一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为( )
    A.B.C.D.
    5、(4分)如图,在矩形ABCD中,AB=2,AD=3,E是BC边上一点,将沿AE折叠,使点B落在点处,连接,则的最小值是( )
    A.B.C.D.
    6、(4分)下列各点一定在函数y=3x-1的图象上的是( )
    A.(1,2)B.(2,1)C.(0,1)D.(1,0)
    7、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,
    方差分别是,,,.在本次射击测试中,成绩最
    稳定的是( )
    A.甲B.乙C.丙D.丁
    8、(4分)小明和小莉同时从学校出发,按相同路线去图书馆,小明骑自行车前往,小莉前一半路程先乘坐公共汽车到图书馆站,然后步行剩下的路程走到图书馆.已知小明骑车的速度是小莉步行速度的2倍,小莉乘坐公共汽车的速度是小明骑车速度的2倍.则比较小明与小莉到达图书馆需要的时间是( )
    A.一样多B.小明多C.小莉多D.无法确定
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在菱形中,若,,则菱形的周长为________.
    10、(4分)如图,四边形ABCD是正方形,△EBC是等边三角形,则∠AED的度数为_________.
    11、(4分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办了“玩转数学”比赛.评委从研究报告、小组展示、答辩三个方面为每个参赛小组打分,按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,各项成绩均按百分制记录.甲小组的研究报告得85分,小组展示得90分,答辩得80分,则甲小组的参赛成绩为_____.
    12、(4分)在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.
    13、(4分)正比例函数的图象经过点(-1,2),则此函数的表达式为___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)对于实数a,b,定义运算“*”,a*b=例如4*1.因为4>1,所以4*1=41-4×1=8,若x1、x1是一元二次方程x1-9x+10=0的两个根,则x1*x1=__.
    15、(8分)已知正方形中,为对角线上一点,过点作交于点,连接,为的中点,连接.
    (1)如图1,求证:;
    (2)将图1中的绕点逆时针旋转45°,如图2,取的中点,连接.问(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.
    (3)将图1中的绕点逆时计旋转任意角度,如图3,取的中点,连接.问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
    16、(8分)用适当的方法解下列方程:
    (1)5x2=4x
    (2)(x+1)(3x﹣1)=0
    17、(10分)如图,▱ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.
    (1)求证:四边形BFDE是平行四边形;
    (2)若∠AEB=68°,求∠C.
    18、(10分)如图,证明定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.
    已知:点D、E分别是△ABC的边AB、AC的中点.
    求证:DE∥BC,DE=BC.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是________.
    20、(4分)如图,正方形CDEF内接于,,,则正方形的面积是________.
    21、(4分)如图,△ABC中,D,E分别 是边AB,AC的中点.若DE=2,则BC= .
    22、(4分)如图,已知一块直角三角板的直角顶点与原点重合,另两个顶点,的坐标分别为,,现将该三角板向右平移使点与点重合,得到,则点的对应点的坐标为__________.
    23、(4分)若是一个完全平方式,则的值等于_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图①,矩形中,,,点是边上的一动点(点与、点不重合),四边形沿折叠得边形,延长交于点.
    图① 图②
    (1)求证:;
    (2)如图②,若点恰好在的延长线上时,试求出的长度;
    (3)当时,求证:是等腰三角形.
    25、(10分)运城市某学校去年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.
    (1)求购买一个甲种足球、一个乙种足球各需多少元;
    (2)今年为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了,乙种足球售价比第一次购买时降低了.如果此次购买甲、乙两种足球的总费用不超过3000元,那么这所学校最多可购买多少个乙种足球?
    26、(12分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    由已知条件得出四边形ABCD是平行四边形,再由对角线互相垂直,即可得出四边形ABCD是菱形.
    【详解】
    如图所示:
    需要添加的条件是AC⊥BD;理由如下:
    ∵四边形ABCD的对角线互相平分,
    ∴四边形ABCD是平行四边形,
    ∵AC⊥BD,
    ∴平行四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形);
    故选:C.
    考查了平行四边形的判定方法、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.
    2、A
    【解析】
    试题解析:本题首先进行去分母,然后进行解关于x的一元一次方程,从而求出答案,最后必须要对这个解进行检验.在方程的两边同时乘以x(x+1)可得:2(x+1)=3x,解得:x=2,经检验:x=2是方程的解.
    3、C
    【解析】
    解:因为x2-6x-5=0
    所以x2-6x=5,
    配方得x2-6x+9=5+9,
    所以,
    所以b=14,
    故选C.
    本题考查配方法,掌握配方法步骤正确计算是解题关键.
    4、C
    【解析】
    设袋中红色幸运星有x个,根据“摸取到红色幸运星的频率稳定在0.5左右”列出关于x的方程,解之可得袋中红色幸运星的个数,再根据频率的定义求解可得.
    【详解】
    解:设袋中红色幸运星有x个,
    根据题意,得:,
    解得:x=35,
    经检验:x=35是原分式方程的解,
    则袋中红色幸运星的个数为35个,
    若小明在盒子中随机摸取一颗幸运星,
    则摸到黄色幸运星的频率为,
    故选:C.
    本题考查了频率的计算,解题的关键是设出求出红色幸运星的个数并熟记公式.
    5、A
    【解析】
    由矩形的性质得出∠B=90°,BC=AD=3,由折叠的性质得:AB'=AB=1,当A、B'、C三点共线时,CB'的值最小,由勾股定理得出AC==,得出CB'=AC-AB'=-1.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠B=90°,BC=AD=3,
    由折叠的性质得:AB'=AB=1,
    当A、B'、C三点共线时,CB'的值最小,
    此时AC==,
    ∴CB'=AC-AB'=-1;
    故选:A.
    本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换的性质和勾股定理是解题的关键.
    6、A
    【解析】
    分别把x=1、2、0代入直线解析式,计算出对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.
    【详解】
    解:A、当x=1时,y=2,故选项正确;
    B、当x=2时,y=5≠1,故选项错误;
    C、当x=0时,y=-1≠1,故选项错误;
    D、当x=1时,y=2≠0,故选项错误;
    故选:A.
    本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式,将点的横坐标代入解析式求出函数值判断是否等于纵坐标是解决此题的关键.
    7、C
    【解析】
    方差越小,成绩越稳定,据此判断即可.
    【详解】
    解:∵0.43<0.90<1.22<1.68,∴丙成绩最稳定,
    故选C
    本题考查了方差的相关知识,属于基础题型,掌握判断的方法是解题的关键.
    8、C
    【解析】
    分别设出小明、小莉的速度路程,然后用代数式表示时间再比较即可.
    【详解】
    设小明的速度是v,则小莉乘坐公共汽车的速度2v, 小莉步行的速度,总路程是s.
    小明的时间是:
    小莉的时间是:
    所以,小莉用的时间多,答案选C.
    本题是对用字母表示数的实际应用,能找到本题当中数量与数量之间的关系是解决本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、8
    【解析】
    由菱形的,可得∠BAD=∠BCD =60°,则在Rt△AOB中根据勾股定理以及30°所对的直角边是斜边的一半,列方程可以求出AB的长,即可求出菱形周长.
    【详解】
    解:如图,
    ∵ABCD为菱形
    ∴∠BAD=∠BCD,BD⊥AC,O为AC、BD中点
    又∵
    ∴∠BAD=∠BCD =60°
    ∴∠BAC=∠BAD=30°
    在Rt△AOB中,BO=AB,
    设BO=x,根据勾股定理可得:
    解得x=1
    ∴AB=2x=2
    ∴菱形周长为8
    故答案为8
    本题考查菱形的性质综合应用,灵活应用菱形性质是解题关键.
    10、150
    【解析】
    根据题意先得出AB=BC=BE,EC=BC=DC,并以此求出∠AEB 和∠DEC,进而利用∠AED=360°-∠AEB -∠DEC -∠BEC即可求出∠AED的度数.
    【详解】
    解:∵四边形ABCD是正方形,△EBC是等边三角形,
    ∴AB=BC=BE,EC=BC=DC, ∠ABE=∠DCE=90°-60°=30°,
    ∴∠AEB=∠EAB=(180°-30°)÷2=75°,
    ∴∠DEC=∠EDC=(180°-30°)÷2=75°,
    ∴∠AED=360°-∠AEB -∠DEC -∠BEC =360°-75°-75°-60°=150°.
    故答案为:150°.
    本题考查正方形的性质以及等腰、等边三角形的性质,熟练掌握相关的性质是解题的关键.
    11、85分
    【解析】
    根据加权平均数的定义计算可得.
    【详解】
    根据题意知,甲小组的参赛成绩为85×40%+90×30%+80×30%=85(分),
    故答案为:85分.
    本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.
    12、
    【解析】
    先找出中心对称图形有平行四边形、正方形和圆3个,再直接利用概率公式求解即可求得答案.
    【详解】
    解:张完全相同的卡片中中心对称图形有平行四边形、正方形和圆3个,
    随机摸出1张,卡片上的图形是中心对称图形的概率是,
    故答案为:.
    本题主要考查了中心对称图形和概率公式.用到的知识点为:概率所求情况数与总情况数之比.
    13、y=-2x
    【解析】
    设正比例函数是y=kx(k≠0).利用正比例函数图象上点的坐标特征,将点(-1,2)代入该函数解析式,求得k值即可.
    【详解】
    设正比例函数是y=kx(k≠0).
    ∵正比例函数的图象经过点(-1,2),
    ∴2=-k,
    解答,k=-2,
    ∴正比例函数的解析式是y=-2x;
    故答案是:y=-2x.
    三、解答题(本大题共5个小题,共48分)
    14、4
    【解析】
    试题分析:先求出方程的两个根,再利用新定义的运算法则计算,计算时需要分类讨论.
    试题解析:
    x1-7x+11=0,(x-4)(x-3)=0,
    x-4=0或x-3=0,∴x1=4,x1=3或x1=3,x1=4.
    当x1=4,x1=3时,x1*x1=41-4×3=4,
    当x1=3,x1=4时,x1*x1=3×4-41=-4,∴x1*x1的值为4或-4.
    点睛:定义新运算是一种人为的、临时性的运算形式,是可以深刻理解数学本源的题型,它使用的是一些特殊的运算符号,如:*、△、⊙,等,解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算.
    15、 (1)见解析;(2)见解析;(3)见解析.
    【解析】
    (1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
    (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
    (3)结论依然成立.过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出结论.
    【详解】
    (1)在中,为的中点,
    ∴.
    同理,在中,.
    ∴.
    (2)如图②,(1)中结论仍然成立,即EG=CG.
    理由:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
    ∴∠AMG=∠DMG=90°.
    ∵四边形ABCD是正方形,
    ∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.
    在△DAG和△DCG中,

    ∴△DAG≌△DCG(SAS),
    ∴AG=CG.
    ∵G为DF的中点,
    ∴GD=GF.
    ∵EF⊥BE,
    ∴∠BEF=90°,
    ∴∠BEF=∠BAD,
    ∴AD∥EF,
    ∴∠N=∠DMG=90°.
    在△DMG和△FNG中,

    ∴△DMG≌△FNG(ASA),
    ∴MG=NG.
    ∵∠DA∠AMG=∠N=90°,
    ∴四边形AENM是矩形,
    ∴AM=EN,
    在△AMG和△ENG中,

    ∴△AMG≌△ENG(SAS),
    ∴AG=EG,
    ∴EG=CG;
    (3)如图③,(1)中的结论仍然成立.
    理由:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN⊥AB于N.
    ∵MF∥CD,
    ∴∠FMG=∠DCG,∠MFD=∠CDG.∠AQF=∠ADC=90°
    ∵FN⊥AB,
    ∴∠FNH=∠ANF=90°.
    ∵G为FD中点,
    ∴GD=GF.
    在△MFG和△CDG中

    ∴△CDG≌△MFG(AAS),
    ∴CD=FM.MG=CG.
    ∴MF=AB.
    ∵EF⊥BE,
    ∴∠BEF=90°.
    ∵∠NHF+∠HNF+∠NFH=∠BEF+∠EHB+∠EBH=180°,
    ∴∠NFH=∠EBH.
    ∵∠A=∠ANF=∠AMF=90°,
    ∴四边形ANFQ是矩形,
    ∴∠MFN=90°.
    ∴∠MFN=∠CBN,
    ∴∠MFN+∠NFE=∠CBN+∠EBH,
    ∴∠MFE=∠CBE.
    在△EFM和△EBC中

    ∴△EFM≌△EBC(SAS),
    ∴ME=CE.,∠FEM=∠BEC,
    ∵∠FEC+∠BEC=90°,
    ∴∠FEC+∠FEM=90°,
    即∠MEC=90°,
    ∴△MEC是等腰直角三角形,
    ∵G为CM中点,
    ∴EG=CG,EG⊥CG.
    考查了正方形的性质的运用,矩形的判定就性质的运用,旋转的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
    16、(1)x1=0,x2=;(2)x1=﹣1,x2=.
    【解析】
    (1)先移项,然后利用因式分解法解方程;
    (2)利用因式分解法解方程.
    【详解】
    解:(1)由原方程,得x(5x﹣4)=0,
    则x=0或5x﹣4=0,
    解得x1=0,x2=;
    (2)(x+1)(3x﹣1)=0,
    x+1=0或3x﹣1=0,
    x1=﹣1,x2=.
    本题考查了因式分解法解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学转化思想).
    17、(1)见解析;(2)∠C=44°.
    【解析】
    (1)由平行四边形的性质及角平分线的性质可得AB=AE,CF=CD,进而可得四边形EBFD是平行四边形,即可得出结论;
    (2)根据平行线的性质和角平分线的定义即可得到结论.
    【详解】
    (1)证明:在平行四边形ABCD中,AD∥BC,
    ∴∠AEB=∠CBE,
    又BE平分∠ABC,
    ∴∠ABE=∠EBC,
    ∴∠ABE=∠AEB,即AB=AE,
    同理CF=CD,
    又AB=CD,∴CF=AE,
    ∴BF=DE,
    ∴四边形EBFD是平行四边形;
    (2)解:∵∠AEB=68°,AD∥BC,
    ∴∠EBF=∠AEB=68°,
    ∵BE平分∠ABC,
    ∴∠ABC=2∠EBF=136°,
    ∴∠C=180°-∠ABC=44°.
    故答案为:(1)见解析;(2)∠C=44°.
    本题考查平行四边形的性质及角平分线的性质问题,要熟练掌握,并能够求解一些简单的计算、证明问题.
    18、见解析
    【解析】
    延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.
    【详解】
    证明:延长DE至F,使EF=DE,连接CF
    ∵E是AC中点,
    ∴AE=CE,
    在△ADE和△CFE中,
    ∴△ADE≌△CFE(SAS),
    ∴AD=CF,∠ADE=∠F
    ∴BD∥CF,
    ∵AD=BD,
    ∴BD=CF
    ∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形)
    ∴DF∥BC,DF=BC,
    ∴DE∥CB,DE=BC.
    本题考查了三角形的中位线定理的证明,用到的知识点有全等三角形的判定和性质以及平行四边形的判定和性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、或
    【解析】
    分逆时针旋转和顺时针旋转两种情况考虑:①顺时针旋转时,由点D的坐标利用正方形的性质可得出正方形的边长以及BD的长度,由此可得出点D′的坐标;②逆时针旋转时,找出点B′落在y轴正半轴上,根据正方形的边长以及BD的长度即可得出点D′的坐标.综上即可得出结论.
    【详解】
    解:分逆时针旋转和顺时针旋转两种情况(如图所示):
    ①顺时针旋转时,点B′与点O重合,
    ∵点D(4,3),四边形OABC为正方形,
    ∴OA=BC=4,BD=1,
    ∴点D′的坐标为(-1,0);
    ②逆时针旋转时,点B′落在y轴正半轴上,
    ∵OC=BC=4,BD=1,
    ∴点B′的坐标为(0,8),点D′的坐标为(1,8).
    故答案为:(-1,0)或(1,8).
    本题考查了正方形的性质,旋转的性质,以及坐标与图形变化中的旋转,分逆时针旋转和顺时针旋转两种情况考虑是解题的关键.
    20、0.8
    【解析】
    根据题意分析可得△ADE∽△EFB,进而可得2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,可解得DE,正方形的面积等于DE的平方问题得解.
    【详解】
    ∵根据题意,易得△ADE∽△EFB,
    ∴BE:AE=BF:DE=EF:AD=2:1,
    ∴2DE=BF,2AD=EF=DE,
    由勾股定理得,DE+AD=AE,
    解得:DE=EF=,
    故正方形的面积是 =,
    故答案为:0.8
    本题考查相似三角形,熟练掌握相似三角形的判定及基本性质是解题关键.
    21、1.
    【解析】
    试题分析:根据题意画出图形,再由三角形的中位线定理进行解答即可.
    试题解析:∵△ABC中,D、E分别是△ABC的边AB、AC的中点,DE=2
    ∴DE是△ABC的中位线,
    ∴BC=2DE=2×2=1.
    考点:三角形中位线定理.
    22、
    【解析】
    根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.
    【详解】
    ∵A(-1,0),
    ∴OA=1,
    ∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB′,
    ∴平移的距离为1个单位长度,
    ∵点B的坐标为
    ∴点B的对应点B′的坐标是,
    故答案为:.
    此题主要考查根据平移的性质求点坐标,熟练掌握,即可解题.
    23、
    【解析】
    根据完全平方公式的特点即可求解.
    【详解】
    ∵是完全平方式,即为,
    ∴.
    故答案为.
    此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2);(3)证明见解析
    【解析】
    (1)由矩形的性质和平行线的性质得出∠BAP=∠APN,由折叠的性质得:∠BAP=∠PAN,得出∠APN=∠PAN,即可得出NA=NP;
    (2)由矩形的性质得出CD=AB=4,AD=BC=3,∠BAD=∠B=∠ADC=90°,由折叠的性质得:AF=AB=4,EF=CB=3,∠F=∠B=90°,PE=PC,由勾股定理得出AE==5,求出DE=AE-AD=2,设DP=x,则PE=PC=4-x,在Rt△PDE中,由勾股定理得出方程,解方程即可;
    (3)过点D作GH∥AF,交EF于G,交AP于H,则GH∥AF∥PE,证出△PDH是等边三角形,得出DH=PH,∠ADH=∠PHD-∠PAD=30°=∠PAD,证出DH=AH,得出AH=PH,由平行线分线段成比例定理得出,得出EG=FG,再由线段垂直平分线的性质得出DE=DF即可.
    【详解】
    (1)证明;∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠BAP=∠APN,
    由折叠的性质得:∠BAP=∠PAN,
    ∴∠APN=∠PAN,
    ∴NA=NP;
    (2)解:∵四边形ABCD是矩形,
    ∴CD=AB=4,AD=BC=3,∠BAD=∠B=∠ADC=90°,
    ∴∠PDE=90°,
    由折叠的性质得:AF=AB=4,EF=CB=3,∠F=∠B=90°,PE=PC,
    ∴AE==5,
    ∴DE=AE-AD=2,
    设DP=x,则PE=PC=4-x,
    在Rt△PDE中,由勾股定理得:DP2+DE2=PE2,
    即x2+22=(4-x)2,
    解得:,即;
    (3)证明:过点D作GH∥AF,交EF于G,交AP于H,如图所示:
    则GH∥AF∥PE,
    ∴∠PHD=∠NAH,
    ∵∠PAD=30°,
    ∴∠APD=90°-30°=60°,∠BAP=90°-30°=60°,
    ∴∠PAN=∠BAP=60°,
    ∴∠PHD=60°=∠APD,
    ∴△PDH是等边三角形,
    ∴DH=PH,∠ADH=∠PHD-∠PAD=30°=∠PAD,
    ∴DH=AH,
    ∴AH=PH,
    ∵GH∥AF∥PE,
    ∴,
    ∴EG=FG,
    又∵GH⊥EF,
    ∴DE=DF,
    ∴△DEF是等腰三角形.
    本题考查了矩形的性质、翻折变换的性质、等腰三角形的判定、勾股定理、等边三角形的判定与性质、平行线分线段成比例定理、线段垂直平分线的性质等知识;本题综合性强,熟练掌握翻折变换的性质和等腰三角形的判定是解题的关键.
    25、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)最多可购买31个乙种足球.
    【解析】
    (1)设购买一个甲种足球需x元,根据:购买足球数=总费用÷单价,购买甲种足球的数量=2×购买乙种足球数量,列出方程求解即可;
    (2)设这所学校再次购买y个乙种足球,根据:购买甲足球费用+购买乙足球费用≤3000,列出不等式,求解得结论.
    【详解】
    (1)解:设购买一个甲种足球需元,则购买一个乙种足球需元,
    由题意得:,
    解得:
    经检验,是原方程的解,
    答:购买一个甲种足球需50元,购买一个乙种足球需70元.
    (2)设这所学校再次购买个乙种足球,则购买个甲种足球,
    由题意得:
    解得:,
    答:最多可购买31个乙种足球.
    本题解题关键:在于弄清已知数与所求量的数量关系,建立联系,特别注意的是分式方程在应用题里面也需要检验.
    26、证明见解析
    【解析】
    首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.
    【详解】
    解:∵DE=BF,
    ∴DE+EF=BF+EF,即DF=BE,
    在Rt△ADF和Rt△CBE中,,
    ∴Rt△ADF≌Rt△CBE(HL),
    ∴AF=CE.
    本题考查了全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.
    题号





    总分
    得分

    相关试卷

    江苏省镇江市京口中学2024年数学九年级第一学期开学质量跟踪监视试题【含答案】:

    这是一份江苏省镇江市京口中学2024年数学九年级第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年四川省绵阳市名校九年级数学第一学期开学质量跟踪监视试题【含答案】:

    这是一份2024年四川省绵阳市名校九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省镇江市五校数学九年级第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份2024年江苏省镇江市五校数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map