2025届江苏省盐城市獐沟中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图是一次函数(、是常数)的图象,则不等式的解集是( )
A.B.
C.D.
2、(4分)已知,如图,正方形的面积为25,菱形的面积为20,求阴影部分的面积()
A.11B.6.5C.7D.7.5
3、(4分)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )
A.甲比乙的成绩稳定
B.乙比甲的成绩稳定
C.甲、乙两人的成绩一样稳定
D.无法确定谁的成绩更稳定
4、(4分)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学均时间是( )
A.4B.3C.2D.1
5、(4分)已知甲、乙、丙三个旅行团的游客人数都相等,且每个旅行团游客的平均年龄都是35岁,这三个旅行团游客年龄的方差分别是,,,如果你最喜欢带游客年龄相近的旅行团,若在三个旅行团中选一个,则你应选择( )
A.甲团B.乙团C.丙团D.采取抽签方式,随便选一个
6、(4分)如图所示,DE是△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为( )
A.B.4C.D.1
7、(4分)如图,矩形ABCD,对角线AC、BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为( )
A.15°B.22.5°C.30°D.45°
8、(4分)若实数a满足,那么a的取值情况是( )
A.B.C.或D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某品牌运动服原来每件售价640元,经过两次降价,售价降低了280元,已知两次降价的百分率相同,则每次降价的百分率为_____.
10、(4分)如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为______.
11、(4分)在菱形ABCD中,M是BC边上的点(不与B,C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为,,则关于的函数解析式是_______________________________.
12、(4分)菱形ABCD的两条对角线长分别为6和4,则菱形ABCD的面积是_____.
13、(4分)函数y=﹣6x+5的图象是由直线y=﹣6x向_____平移_____个单位长度得到的.
三、解答题(本大题共5个小题,共48分)
14、(12分)解下列方程:
(1)
(2)
15、(8分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形,图中已给出△ABC的一边AB的位置.
(1)请在所给的网格中画出边长分别为2,,4的一个格点△ABC;
(2)根据所给数据说明△ABC是直角三角形.
16、(8分)如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE点F在AB上,且BF=DE
(1)求证:四边形BDEF是平行四边形
(2)线段AB,BF,AC之间具有怎样的数量关系?证明你所得到的结论
17、(10分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中A(1,1)、B(4,4)、C(5,1).
(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△A2B2C2,A、B、C的对应点分别是A2、B2、C2;
(3)连CB2,直接写出点B2、C2的坐标B2: 、C2: .
18、(10分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。
(1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。
(2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某种药品原价75元盒,经过连续两次降价后售价为45元/盒.设平均每次降价的百分率为x,根据题意可列方程为_____.
20、(4分)一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是 .
21、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
22、(4分)如图,矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则BC=_____.
23、(4分)如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了有效地落实国家精准扶贫政策,切实关爱贫困家庭学生.某校对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:
(1)填空:a = ,b= ;
(2)求这所学校平均每班贫困学生人数;
(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.
25、(10分)如图,在平面直角坐标系中,直线y=x和y=﹣2x+6交于点A.
(1)求点A的坐标;
(2)若点C的坐标为(1,0),连接AC,求△AOC的面积.
26、(12分)化简求值: 1(+1)(-1)-(1-1),其中=1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据一次函数图像与不等式的性质即可求解.
【详解】
∵一次函数与x轴的交点横坐标为-2,
∴不等式的解集为
故选B.
此题主要考查一次函数的图像,解题的关键是熟知一次函数与不等式的关系.
2、A
【解析】
由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.
【详解】
∵正方形ABCD的面积是25,
∴AB=BC=BP=PQ=QC=5,
又∵S菱形BPQC=PQ×EC=5×EC=20,
∴S菱形BPQC=BC•EC,
即20=5•EC,
∴EC=4
在Rt△QEC中,EQ==3;
∴PE=PQ-EQ=2,
∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.
故选A.
此题考查菱形的性质,正方形的性质,解题关键在于利用勾股定理进行计算.
3、B
【解析】
通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,
故选B.
4、B
【解析】
根据题意得:(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),
答:这10名学生周末学均时间是3小时;
故选B.
5、B
【解析】
试题解析:∵S甲2=17,S乙2=14.6,S丙3=19,
∴S乙2最小,游客年龄相近,
故选B.
点睛:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
6、A
【解析】
根据DE为△ABC的中位线可得DE=BC=4,再根据∠AFB=90°,即可得到DF=AB=,从而求得EF=DE-DF=.
故选A.
点睛:此题主要考查了三角形的中位线,解答本题的关键是熟练掌握三角形的中位线平行于第三边,且等于第三边的一半;直角三角形斜边上的中线等于斜边的一半.
7、B
【解析】
根据同角的余角相等易证∠BAE=∠ADE,根据矩形对角线相等且互相平分的性质,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠ADB的大小,从而得到结果.
【详解】
∵四边形ABCD是矩形,AE⊥BD,
∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,
∴∠BAE=∠ADE
∵矩形对角线相等且互相平分,
∴∠OAB=∠OBA=,
∴∠BAE=∠ADE=90﹣67.5°=22.5°,
故选 B.
本题考查了矩形的性质,解题的关键是熟练掌握矩形的对角线相等且互相平分.
8、D
【解析】
根据二次根式的性质即可解答.
【详解】
由题意可知:=﹣a+2=﹣(a﹣2),
∴a﹣2≤0,
∴a≤2,
故选D.
本题考查了二次根式的性质,熟知是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、25% .
【解析】
设每次降价的百分率为x,根据题意可得,640×(1-降价的百分率)2=(640-280),据此方程解答即可.
【详解】
设每次降价的百分率为x
由题意得:
解得:x=0.25
答:每次降低的百分率是25%
故答案为:25%
本题考查一元二次方程的应用,属于典型题,审清题意,列出方程是解题关键.
10、1.
【解析】
解:依题意知,BG=AF=DE=8,EF=FG=2,∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===1.故答案为1.
点睛:此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.
11、
【解析】
首先根据菱形的性质得出∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC,进而得出∠BAM,然后根据对称性得出∠AND=∠AND==180°-,分情况求解即可.
【详解】
∵菱形ABCD中,AB=AM,
∴∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC
∴∠ABC+∠BAD=180°,
∴∠BAD=180°-
∵AB=AM,
∴∠AMB=∠ABC=
∴∠BAM=180°-∠ABC-∠AMB=180°-2
连接BN、AN,如图:
∵点B关于直线AM对称的点是N,
∴AN=AB,∠MAN=∠BAM=180°-2,即∠BAN=2∠BAM=360°-4
∴AN=AD,∠DAN=∠BAD-∠BAN=180°--(360°-4)=3-180°
∴∠AND=∠AND==180°-
∵M是BC边上的点(不与B,C两点重合),
∴
∴
若,即时,
∠CDN=∠ADC-∠AND=,即;
若即时,
∠CDN=∠AND-∠ADC =,即
∴关于的函数解析式是
故答案为:.
此题主要考查菱形的性质与一次函数的综合运用,熟练掌握,即可解题.
12、1
【解析】
根据菱形的面积等于对角线积的一半,即可求得其面积.
【详解】
∵菱形ABCD的两条对角线长分别为6和4,
∴其面积为4×6=1.
故答案为:1.
此题考查了菱形的性质.注意熟记①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度).
13、上 1.
【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
【详解】
解:函数y=-6x+1的图象是由直线y=-6x向上平移1个单位长度得到的.
故答案为:上,1.
本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、解:(1)(2)
【解析】
(1)把左边配成完全平方式,右边化为常数;
(2)因方程公因式很明显故用因式分解法求解.
【详解】
(1)把方程的常数项移得,
x2−4x=−1,
方程两边同时加上一次项系数一半的平方得,
x2−4x+4=−1+4,
配方得,(x−2)2=3,
解得:x1=2+,x2=2−
(2)先提取公因式5x+4得,
(5x+4)(x−1)=0,
解得x1=1,x2=−
15、(1)画图见解析;(2)证明见解析
【解析】试题分析(1) 利用勾股定理即可作出边长为2,,4的一个格点△ABC;(2)根据勾股定理得逆定理即可证明.
试题解析:(1)如图所示:
(2)由图可知,AB=4,BC=2,AC=,
∵AB2+BC2=20,AC2=20,
∴AB2+BC2=AC2,
∴△ABC是直角三角形.
16、(1)见解析;(2),理由见解析
【解析】
(1)延长CE交AB于点G,证明,得E为中点,通过中位线证明DEAB,结合BF=DE,证明BDEF是平行四边形
(2)通过BDEF为平行四边形,证得BF=DE=BG,再根据,得AC=AG,用AB-AG=BG,可证
【详解】
(1)证明:延长CE交AB于点G
∵AECE
∴
在和
∴
∴GE=EC
∵BD=CD
∴DE为的中位线
∴DEAB
∵DE=BF
∴四边形BDEF是平行四边形
(2)
理由如下:
∵四边形BDEF是平行四边形
∴BF=DE
∵D,E分别是BC,GC的中点
∴BF=DE=BG
∵
∴AG=AC
BF=(AB-AG)=(AB-AC).
本题主要考查了平行四边形的证明,中位线的性质,全等三角形的证明等综合性内容,作好适当的辅助线,是解题的关键.
17、(1)见解析;(2)见解析;(3)(4,﹣2),(1,﹣3).
【解析】
(1)分别画出A、B、C的对应点A1,B1,C1即可
(2)分别画出A、B、C的对应点A2, B2, C2即可
(3)根据B2, C2的位置写出坐标即可;
【详解】
解:(1)的△A1B1C1如图所示.
(2)的△A2B2C2如图所示.
(3)B2(4,﹣2),C2(1,﹣3),
故答案为(4,﹣2),(1,﹣3).
此题考查作图-旋转变换和平移变换,掌握作图法则是解题关键
18、(1)A(-3,-4),B'(-1,-1);(2)D1(4,0),D2(-6,2),D3(0,6)
【解析】
(1)分别作A、B、C关于x轴对称的点A‘、B’、C‘,然后顺次把这三点连接起来即可;由图直接读出A’、B‘、C’的坐标即可;
(2)分别以BC、AB、AC为对角线作平行四边形,得到D1、D2、D3 , 由图读出D1、D2、D3坐标即可.
【详解】
(1)解:如图所示,△A'B′C′即为所求,A(-3,-4),B'(-1,-1),C(2,-3)
(2)解:如图所示,D1(4,0),D2(-6,2),D3(0,6)(只需写出一点即可)
此题主要考查图形与坐标,解题的关键是熟知平行四边形的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
可先表示出第一次降价后的价格,那么第一次降价后的价格×(1-降低的百分率)=1,把相应数值代入即可求解.
【详解】
解:第一次降价后的价格为75×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为:
75×(1-x)×(1-x),
则列出的方程是75(1-x)2=1.
故答案为75(1-x)2=1.
此题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
20、5
【解析】
解:∵这组数据的中位数和平均数相等,且2、3、4、x从小到大排列,
∴(3+4)=(2+3+4+x),
解得:x=5;
故答案为5
21、y=2x+1.
【解析】
用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
【详解】
解:把(﹣1,2),(0,1)分别代入y=kx+b得,
,
解得,
所以,y=2x+1.
故答案为y=2x+1.
本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
22、2
【解析】
根据题意推出AB=AB1=2,由AE=CE推出AB1=B1C,即AC=4,然后依据勾股定理可求得BC的长.
【详解】
解:∵AB=2cm,AB=AB1
∴AB1=2cm,
∵四边形ABCD是矩形,AE=CE,
∴∠ABE=∠AB1E=90°
∵AE=CE,
∴AB1=B1C,
∴AC=4cm.
在Rt△ABC中,BC= .
故答案为:2cm.
本题主要考查翻折的性质、矩形的性质、等腰三角形的性质,解题的关键在于推出AB=AB1.
23、(5,4)
【解析】
由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4).
故答案为(5,4).
二、解答题(本大题共3个小题,共30分)
24、 (1) a=2,b=10;(2)2;(3).
【解析】
(1)利用扇形图以及统计表,即可解决问题;
(2)根据平均数的定义计算即可;
(3)列表分析即可解决问题.
【详解】
(1)由题意a=2,b=10%.
故答案为2,10%;
(2)这所学校平均每班贫困学生人数2(人);
(3)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:
由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为.
本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、(1)A的坐标(2,2);(2)1.
【解析】
(1)联立y=x和y=﹣2x+6,解方程组即可得到结论;
(2)根据三角形的面积公式即可得到结论.
【详解】
解:(1)∵直线y=x和y=-2x+6交于点A,
∴解得x=y=2,
∴点A的坐标(2,2);
(2)∵点C的坐标为(1,0),
∴OC=1,
∴△AOC的面积=×1×2=1.
本题考查了两直线相交与平行,解二元一次方程组,三角形的面积的计算,以及数形结合的数学思想,掌握的理解题意是解题的关键.
26、;0
【解析】
先利用乘法公式和单项式乘多项式法则将原式进行化简,再将x=1代入求值即可.
【详解】
解:原式=1(x1-1)-1x1+x
=
=
当x=1时, 原式= 0
本题考查的是整式的化简求值,能够准确计算是解题的关键.
题号
一
二
三
四
五
总分
得分
贫困学生人数
班级数
1名
5
2名
2
3名
a
5名
1
2025届江苏省南京六中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2025届江苏省南京六中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省南京市第五初级中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024年江苏省南京市第五初级中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州市南环中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州市南环中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。