![江苏省扬州市江都区实验2025届数学九上开学教学质量检测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16285120/0-1729728975930/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省扬州市江都区实验2025届数学九上开学教学质量检测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16285120/0-1729728975961/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省扬州市江都区实验2025届数学九上开学教学质量检测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16285120/0-1729728975982/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省扬州市江都区实验2025届数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)正方形具有而菱形不具有的性质是( )
A.对角线互相平分B.对角线相等
C.对角线平分一组对角D.对角线互相垂直
2、(4分)如果一个多边形的每一个外角都是60°,则这个多边形的边数是( )
A.3B.4C.5D.6
3、(4分)已知菱形的两条对角线长分别为6和8,则它的周长为( )
A.10B.14C.20D.28
4、(4分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的面积是( )
A.24B.30C.40D.48
5、(4分)如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b的解集正确的是( )
A.x>﹣1B.x>1C.x<1D.x<﹣1
6、(4分)下列调查中,调查方式选择合理的是( )
A.调查你所在班级同学的身高,采用抽样调查方式
B.调查市场上某品牌电脑的使用寿命,采用普查的方式
C.调查嘉陵江的水质情况,采用抽样调查的方式
D.要了解全国初中学生的业余爱好,采用普查的方式
7、(4分)如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为( )
A.B.C.D.
8、(4分)如图,在平面直角坐标系中,点、的坐标分别是.,点在直线上,将沿射线方向平移后得到.若点的横坐标为,则点的坐标为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)用反证法证明“若,则”时,应假设_____.
10、(4分)约分:=_________.
11、(4分)如图,正方形ABCD中,AB=6,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为_____。
12、(4分)将二元二次方程化为两个一次方程为______.
13、(4分)如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.
(1)求证:∠A=∠AEB;
(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.
15、(8分)已知:如图,在梯形中,,,是上一点,且,,求证:是等边三角形.
16、(8分)如图,方格纸中的每个小方格都是边长为1个单位长度的小正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A,B,C三点的坐标分别为(5,﹣1),(2,﹣5),(2,﹣1).
(1)把△ABC向上平移6个单位后得到△A1B1C1,画出△A1B1C1;
(2)画出△A2B2C2,使它与△ABC关于y轴对称;
(3)画出△A3B3C3,使它与△ABC关于原点中心对称.
17、(10分)如图,在△ABC中AB=AC.在△AEF中AE=AF,且∠BAC=∠EAF.求证:∠AEB=∠AFC.
18、(10分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.
(1)写出y与t之间的函数关系式;
(2)通话2分钟应付通话费多少元?通话7分钟呢?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直接写出计算结果:(2xy)∙(-3xy3)2=_____.
20、(4分)若在实数范围内有意义,则的取值范围是____________.
21、(4分)写一个图象经过点(﹣1,2)且y随x的增大而减小的一次函数解析式_____.
22、(4分)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=1.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…;以此类推,则第2019个三角形的周长是_____.
23、(4分)如图,在矩形ABCD中,,,将矩形沿AC折叠,则重叠部分的面积为______.
二、解答题(本大题共3个小题,共30分)
24、(8分) 先化简,再求值:(﹣x﹣1)÷,其中x=1.
25、(10分)(1)计算
(2)解方程
26、(12分)如图,方格纸中每个小方格都长为1个单位的正方形,已知学校位置坐标为A(1,2)。
(1)请在图中建立适当的平面直角坐标系;
(2)写出图书馆B位置的坐标。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据正方形和菱形的性质逐项分析可得解.
【详解】
根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,
故选B.
考点:1.菱形的性质;2.正方形的性质.
2、D
【解析】
解:由一个多边形的每一个外角都等于10°,且多边形的外角和等于310°,即求得这个多边形的边数为310÷10=1.故答案选D.
考点:多边形外角与边数的关系.
3、C
【解析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
【详解】
解:如图所示,
根据题意得AO=×8=4,BO=×6=3,
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AC⊥BD,
∴△AOB是直角三角形,
∴AB==5,
∴此菱形的周长为:5×4=1.
故选:C.
本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
4、A
【解析】
根据菱形的面积等于对角线乘积的一半即可解决问题.
【详解】
∵四边形ABCD是菱形,AC=6,BD=8,
∴菱形ABCD的面积=⋅AC⋅BD=×6×8=24.
故选A.
此题考查菱形的性质,解题关键在于计算公式.
5、A
【解析】
根据图象求解不等式,要使x+a>kx+b,则必须在y1=x+a在y2=kx+b上方,根据图形即可写出答案.
【详解】
解:因为直线y1=x+a与y2=kx+b相交于点P(﹣1,2)
要使不等式x+a>kx+b,则必须在y1=x+a在y2=kx+b上方
所以可得x>﹣1时,y1=x+a在y2=kx+b上方
故选A.
本题主要考查利用函数图形求解不等式,关键在于根据图象求交点坐标.
6、C
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:A、调查你所在班级同学的身高,应采用全面调查方式,故方法不合理,故此选项错误;
B、调查市场上某品牌电脑的使用寿命,采用普查的方式,方法不合理,故此选项错误;
C、查嘉陵江的水质情况,采用抽样调查的方式,方法合理,故此选项正确;
D、要了解全国初中学生的业余爱好,采用普查的方式,方法不合理,故此选项错误;
故选C.
本题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、D
【解析】
根据等边三角形的性质和平移的性质即可得到结论.
【详解】
解:∵△OAB是等边三角形,
∵B的坐标为(2,0),
∴A(1,),
∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,
∴A′的坐标(4,),
故选:D.
本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.
8、C
【解析】
由点的横坐标为及点在直线上,可得点(2,4)得出图形平移规律进行计算即可.
【详解】
解:由点的横坐标为及点在直线上
当x=2时,y=4
∴(2,4)
∴该图形平移规律为沿着x轴向右平移两个单位,沿着y轴向上平移4个单位
∴ (6,4)
故答案选: C
本题考查了由函数图像推出点坐标,图形的平移规律,掌握图形的平移规律与点的平移规律是解决的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.
【详解】
解:用反证法证明“若,则”时,应假设.
故答案为:.
此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
10、.
【解析】
由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
【详解】
解:原式=,
故答案为:.
本题考查约分,正确找出公因式是解题的关键.
11、3
【解析】
连接DE,交AC于点P,连接BD.点B与点D关于AC对称,DE的长即为PE+PB的最小值,根据勾股定理即可得出DE的长度.
【详解】
连接DE,交AC于点P,连接BD.
∵点B与点D关于AC对称,
∴DE的长即为PE+PB的最小值,
∵AB=6,E是BC的中点,
∴CE=3,
在Rt△CDE中,
DE=
=
=
=3.
故答案为3.
主要考查轴对称,勾股定理等考点的理解,作出辅助线得出DE的长即为PE+PB的最小值为解决本题的关键.
12、和
【解析】
二元二次方程的中间项,根据十字相乘法,分解即可.
【详解】
解:,
,
∴,.
故答案为:和.
本题考查了高次方程解法和分解因式的能力.熟练运用十字相乘法,是解答本题的关键.
13、45°
【解析】
如图,连接OA,因OA=OC,可得∠ACO=∠OAC=45°,根据三角形的内角和公式可得∠AOC=90°,再由圆周角定理可得∠B=45°.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据圆内接四边形的性质可得,根据邻补角互补可得,进而得到,然后利用等边对等角可得,进而可得;
(2)首先证明是等边三角形,进而可得,再根据,可得△ABE是等腰三角形,进而可得△ABE是等边三角形.
【详解】
解:(1)∵四边形ABCD是⊙O的内接四边形,
∴,
∵,
∴,
∵DC=DE,
∴,
∴;
(2)∵,
∴△ABE是等腰三角形,
∵EO⊥CD,
∴CF=DF,
∴EO是CD的垂直平分线,
∴ED=EC,
∵DC=DE,
∴DC=DE=EC,
∴△DCE是等边三角形,
∴,
∴△ABE是等边三角形.
本题考查圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.
15、见解析.
【解析】
由已知条件证得四边形AECD是平行四边形,则CE=AD,从而得出CE=CB,然后根据有一个角是60°的等腰三角形是等边三角形即可证得结论.
【详解】
证明:,,
四边形是平行四边形,
,
,
,
是等边三角形.
本题考查了等腰梯形的性质,等边三角形的判定,平行四边形的判定和性质,熟练掌握各定理是解题的关键.
16、 (1)见解析;(2)见解析;(3)见解析.
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用轴对称的性质得出对应点位置进而得出答案;
(3)直接利用旋转的性质得出对应点位置进而得出答案.
【详解】
(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求;
(3)如图所示:△A3B3C3,即为所求.
此题主要考查了平移变换以及轴对称变换和旋转变换,正确得出对应点位置是解题关键.
17、证明见解析
【解析】
根据全等三角形的判定得出△BAE与△CAF全等,进而解答即可.
【详解】
证明:∵∠BAC=∠EAF,
∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,
∴∠BAE=∠CAF,
在△BAE与△CAF中,
,
∴△BAE≌△CAF(SAS)
∴∠AEB=∠AFC.
本题考查全等三角形的判定和性质,解题的关键是根据全等三角形的判定得出△BAE与△CAF全等.
18、(1)当0
【解析】
试题分析:(1)由图,当时,y为恒值;当时,图象过点(3,2.4)、(5,4.4),可根据待定系数法求函数关系式;
(2)因为,所以根据AB段对应的函数即可得到结果;因为7>3,所以根据BC段对应的函数关系式即可得结果.
(1)当时,;
当时,设函数关系式为,
∵图象过点(3,2.4)、(5,4.4),
,解得,
y与t之间的函数关系式为;
(2)当时,元,
当时,元.
考点:本题考查的是一次函数的应用
点评:此类题目的解决需仔细分析函数图象,从中找寻信息,利用待定系数法求出函数解析式,从而解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、18.
【解析】
根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.
【详解】
(2xy)•(-3xy3)2
=(2×9)•(x•x2)•(y•y6)
=18x3y7.
本题考查了单项式与单项式相乘.熟练掌握运算法则是解题的关键.
20、且.
【解析】
分析:根据分式有意义和二次根式有意义的条件解题.
详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.
故答案为x≥0且x≠1.
点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.
21、y=﹣x+1(答案不唯一).
【解析】
根据一次函数的性质,y随x的增大而减小时k值小于0,令k=−1,然后求解即可.
【详解】
解:∵y随x的增大而减小,
∴k<0,
不妨设为y=﹣x+b,
把(﹣1,1)代入得,1+b=1,
解得b=1,
∴函数解析式为y=﹣x+1.
故答案为:y=﹣x+1(答案不唯一).
本题考查了一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
22、
【解析】
由三角形的中位线定理得:B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出结论.
【详解】
∵△A1B1C1中,A1B1=4,A1C1=5,B1C1=1,
∴△A1B1C1的周长是16,
∵A2,B2,C2分别是边B1C1,A1C1,A1B1的中点,
∴B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,
…,
以此类推,则△A4B4C4的周长是×16=2;
∴△AnBn∁n的周长是,
∴第2019个三角形的周长是=,
故答案为:.
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
23、1
【解析】
首先证明AE=CE,根据勾股定理列出关于线段AE的方程,解方程求出AE的长问题即可解决.
【详解】
解:由题意得:∠DCA=∠ACE,
∵四边形ABCD为矩形,
∴DC//AB,∠B=90°,
∴∠DCA=∠CAE,
∴∠CAE=∠ACE,
∴AE=CE(设为x),
则BE=8-x,
由勾股定理得:x2=(8-x) 2+42,
解得:x=5,
∴S△AEC =×5×4=1,
故答案为1.
本题考查了矩形的性质、折叠的性质、勾股定理的应用等,熟练掌握和灵活运用相关的性质及定理是解题的关键.本题也要注意数形结合思想的运用.
二、解答题(本大题共3个小题,共30分)
24、﹣x1﹣x+1,﹣2
【解析】
先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
【详解】
(﹣x﹣1)÷
=,
=,
=﹣(x﹣1)(x+1)
=﹣x1﹣x+1,
当x=1时,
原式=﹣2﹣1+1
=﹣2.
本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.
25、(1)原式=;(2)x1=-1,x2=2.5;
【解析】
(1)根据负整数指数幂的意义与二次根式的性质分别化简得出答案;
(2)整理后直接利用公式法或十字相乘法解方程.
【详解】
解:(1)原式=
=
= ;
(2)
整理得:
(x+1)(2x-5)=0
∴ , .
故答案为:1)原式=;(2) , .
本题考查二次根式的混合运算和解一元二次方程,解题的关键是熟练运用一元二次方程的解法和二次根式的性质.
26、(1)见解析;(2)(−3,−2);
【解析】
(1)利用点A的坐标画出直角坐标系;
(2)根据点的坐标的意义描出点B;
【详解】
(1)建立直角坐标系如图所示:
(2)图书馆(B)位置的坐标为(−3,−2);
故答案为:(−3,−2);
此题考查坐标确定位置,解题关键在于根据题意画出坐标系.
题号
一
二
三
四
五
总分
得分
江苏省扬州市江都区城区2024年数学九上开学复习检测模拟试题【含答案】: 这是一份江苏省扬州市江都区城区2024年数学九上开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省扬州市江都区江都实验中学九上数学开学联考模拟试题【含答案】: 这是一份2025届江苏省扬州市江都区江都实验中学九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省扬州市江都区江都区实验初级中学九上数学开学调研模拟试题【含答案】: 这是一份2024年江苏省扬州市江都区江都区实验初级中学九上数学开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。