江苏省扬州市江都区第二中学2024年九年级数学第一学期开学统考试题【含答案】
展开
这是一份江苏省扬州市江都区第二中学2024年九年级数学第一学期开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数据中的是三个数作为三角形的边长,其中能构成直角三角形的是( )
A.1,,B.C.5,6,7D.7,8,9
2、(4分)不等式组的解集在数轴上表示为
A.B.
C.D.
3、(4分)如图,在□ABCD中,点E、F分别在边AB、DC上,下列条件不能使四边形EBFD是平行四边形的条件是( )
A.DE=BFB.AE=CFC.DE∥FBD.∠ADE=∠CBF
4、(4分)如图,已知△ABC,任取一点O,连AO,BO,CO,分别取点D,E,F,使OD=AO,OE=BO,OF=CO,得△DEF,有下列说法:
①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;
③△DEF与△ABC的周长比为1:3;④△DEF与△ABC的面积比为1:1.
则正确的个数是( )
A.1B.2C.3D.4
5、(4分)一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是( )
A.12B.13C.14D.12或14
6、(4分)下列各式中,最简二次根式是( )
A.B.C.D.
7、(4分)如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是
④四边形AnBnCnDn的面积是
A.①②③B.②③④C.①②D.②③
8、(4分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于( )
A.10B.9C.8D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.
10、(4分)如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠ADM的度数是_____.
11、(4分)若,则xy的值等于_______.
12、(4分)若式子是二次根式,则x的取值范围是_____.
13、(4分)已知一次函数y=kx+3k+5的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为_____
三、解答题(本大题共5个小题,共48分)
14、(12分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为分.前名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为分),现得知号选手的综合成绩为分.
(1)求笔试成绩和面试成绩各占的百分比:
(2)求出其余两名选手的综合成绩,并以综合成绩排序确定这三名选手的名次。
15、(8分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
16、(8分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,B、D分别在轴负半轴、轴正半轴上,点E是轴的一个动点,连接CE,以CE为边,在直线CE的右侧作正方形CEFG.
(1)如图1,当点E与点O重合时,请直接写出点F的坐标为_______,点G的坐标为_______.
(2)如图2,若点E在线段OD上,且OE=1,求正方形CEFG的面积.
(3)当点E在轴上移动时,点F是否在某条直线上运动?如果是,请求出相应直线的表达式;如果不是,请说明理由.
17、(10分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120∘ ,∠B=∠ADC=90°.E、F分别是 BC,CD 上的点.且∠EAF=60° . 探究图中线段BE,EF,FD 之间的数量关系. 小王同学探究此问题的方法是,延长 FD 到点 G,使 DG=BE,连结 AG,先证明△ABE≌△ADG, 再证明△AEF≌△AGF,可得出结论,他的结论应是_________;
探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180° .E,F 分别是 BC,CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东 70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55 海里/小时的速度前进,舰艇乙沿北偏东 50°的方向以 75 海里/小时的速度前进2小时后, 指挥中心观测到甲、乙两舰艇分别到达 E,F 处,且两舰艇之间的夹角为70° ,试求此时两舰 艇之间的距离.
18、(10分)已知,正比例函数的图象与一次函数的图象交于点.
(1)求,的值;
(2)求一次函数的图象与,围成的三角形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是_________.
20、(4分)化简:=__________.
21、(4分)如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6 cm,动点P,Q分别从A,C同时出发,P以1 cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.
22、(4分)如图所示,在四边形中,,分别是的中点,,则的长是___________.
23、(4分)如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)化简:;
25、(10分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.
26、(12分)如图,在平面直角坐标系中,一次函数的图象与正比例函数的图象都经过点.
(1)求一次函数和正比例函数的解析式;
(2)若点是线段上一点,且在第一象限内,连接,设的面积为,求面积关于的函数解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据勾股定理的逆定理逐项分析即可.
【详解】
解:A、∵12+()2=()2,∴能构成直角三角形;
B、()2+()2≠()2,∴不能构成直角三角形;
C、52+62≠72,∴不能构成直角三角形;
D、∵72+82≠92,∴不能构成直角三角形.
故选:A.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
2、D
【解析】
分别求出不等式组中每一个不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
:,
由得,,
由得,,
故此不等式组的解集为:,
在数轴上表示为:
故选D.
本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.在数轴上表示时要注意实心圆点与空心圆点的区别.
3、A
【解析】
根据平行四边形的性质可得AB∥CD,添加DE=BF后,满足一组对边平行,另一组对边相等,不符合平行四边形的判定方法,进而可判断A项;
根据平行四边形的性质可得AB∥CD,AB=CD,进一步即得BE=DF,根据一组对边平行且相等的四边形是平行四边形即可判断B项;
根据平行四边形的性质可得AB∥CD,进而根据平行四边形的定义可判断C项;
根据平行四边形的性质可证明△ADE≌△CBF,进而可得AE=CF,DE=BF,然后根据两组对边相等的四边形是平行四边形即可判断D项.
【详解】
解:A、∵四边形ABCD是平行四边形,∴AB∥CD,由DE=BF,不能判定四边形EBFD是平行四边形,所以本选项符合题意;
B、∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,
∵AE=CF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意;
C、∵四边形ABCD是平行四边形,∴AB∥CD,
∵DE∥FB,∴四边形EBFD是平行四边形,所以本选项不符合题意;
D、∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,AB=CD,
∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA),∴AE=CF,DE=BF,
∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意.
故选:A.
本题考查了平行四边形的性质和判定以及全等三角形的判定和性质,属于常考题型,熟练掌握平行四边形的判定和性质是解本题的关键.
4、C
【解析】
直接利用位似图形的性质以及相似图形的性质分别分析得出答案.
【详解】
解:∵任取一点O,连AO,BO,CO,分别取点D,E,F,OD=AO,OE=BO,OF=CO,
∴△DEF与△ABC的相似比为:1:3,
∴①△ABC与△DEF是位似图形,正确;
②△ABC与△DEF是相似图形,正确;
③△DEF与△ABC的周长比为1:3,正确;
④△DEF与△ABC的面积比为1:9,故此选项错误.
故选:C.
此题主要考查位似图形的性质,解题的关键是熟知位似的特点.
5、C
【解析】
解方程x2﹣7x+12=0,得 ,则等腰三角形的三边为4,4,6或3,3,6(舍去),易得等腰三角形的周长为4+4+6=14,故选C.
6、C
【解析】
根据最简二次根式的定义逐个判断即可.最简二次根式满足两个条件,一是被开方式不含能开的尽方的因式,二是被开方式不含分母.
【详解】
A、 =,不是最简二次根式,故本选项不符合题意;
B、=2,不是最简二次根式,故本选项不符合题意;
C、是最简二次根式,故本选项符合题意;
D、=2,不是最简二次根式,故本选项不符合题意;
故选C.
本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.
7、C
【解析】
首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.
【详解】
①连接A1C1,B1D1.
∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四边形A1B1C1D1是平行四边形;
∵AC丄BD,∴四边形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的两条对角线相等);
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故①错误;
②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故②正确;
③根据中位线的性质易知,A5B5=
∴四边形A5B5C5D5的周长是2×;
故③正确;
④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是.
故④正确;
综上所述,②③④正确.
故选C.
考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
8、B
【解析】
作EF⊥BC于F,根据角平分线的性质可知EF=DE=3,即可求出△BCE的面积.
【详解】
作EF⊥BC于F,
∵BE平分∠ABC,ED⊥AB,EF⊥BC,
∴EF=DE=3,
∴△BCE的面积=×BC×EF=9,
故选B.
本题考查了角平分线的性质,熟练掌握角平分线的性质:角平分线上的点到角两边的距离相等是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①②③④
【解析】
首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.
【详解】
∵△ABD和△ACE都是等边三角形,
∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.
∵F是AB的中点,
∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.
∵∠BAC=30°,∠ACB=90°,AD=2AF.
∴BC=AB,∠ADF=∠BAC,
∴AF=BF=BC.
在Rt△ADF和Rt△BAC中
AD=BA ,AF=BC,
∴Rt△ADF≌Rt△BAC(HL),
∴DF=AC,
∴AE=DF.
∵∠BAC=30°,
∴∠BAC+∠CAE=∠BAE=90°,
∴∠DFA=∠EAB,
∴DF∥AE,
∴四边形ADFE是平行四边形,故②正确;
∴AD=EF,AD∥EF,
设AC交EF于点H,
∴∠DAC=∠AHE.
∵∠DAC=∠DAB+∠BAC=90°,
∴∠AHE=90°,
∴EF⊥AC.①正确;
∵四边形ADFE是平行四边形,
∴2GF=2GA=AF.
∴AD=4AG.故③正确.
在Rt△DBF和Rt△EFA中
BD=FE,DF=EA,
∴Rt△DBF≌Rt△EFA(HL).故④正确,
故答案为:①②③④.
本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.
10、75°
【解析】
连接BD,根据BD,AC为正方形的两条对角线可知AC为BD的垂直平分线,所以∠AMD=AMB,求∠AMD,∠AMB,再根据三角形内角和可得.
【详解】
如图,连接BD,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,
∴∠EBC=∠BEC=(180°-∠BCE)=15°,
∵∠BCM=∠BCD=45°,
∴∠BMC=180°-(∠BCM+∠EBC)=120°
∴∠AMB=180°-∠BMC=60°
∵AC是线段BD的垂直平分线,M在AC上,
∴∠AMD=∠AMB=60°,
∴∠ADM=180〬-∠DAC-∠AMD=180〬-45〬-60〬=75〬.
故答案为75〬
本题考核知识点:正方形性质,等边三角形. 解题关键点:运用正方形性质,等边三角形性质求角的度数.
11、1
【解析】
直接利用偶次方的性质以及二次根式的性质得出x,y的值进而得出答案.
【详解】
解:∵,
∴x-1=0, y-1=0,
解得:x=1,y=1,
则xy=1.
此题主要考查了完全平方公式,偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.
12、:x≥1
【解析】
根据根式的意义,要使根式有意义则必须被开方数大于等于0.
【详解】
解:若式子 是二次根式,则x的取值范围是:x≥1.
故答案为:x≥1.
本题主要考查根式的取值范围,这是考试的常考点,应当熟练掌握.
13、-2
【解析】
由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.
【详解】
由已知得:,
解得:-<k<2.
∵k为整数,
∴k=-2.
故答案为:-2.
本题考查了一次函数图象与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象与系数的关系找出关于系数的不等式(或不等式组)是关键.
三、解答题(本大题共5个小题,共48分)
14、(1)笔试占,面试占;(2)第一名:2号,第二名:1号,第三名:3号.
【解析】
(1)设笔试成绩占百分比为,则面试成绩占比为,根据题意列出方程,求解即可;
(2)根据笔试成绩和面试成绩各占的百分比,分别求出其余两名选手的综合成绩,即可得出答案.
【详解】
解:(1)设笔试成绩占百分比为,则面试成绩占比为.
由题意,得
∴笔试成绩占,面试成绩占.
(2)2号选手的综合成绩:
3号选手的综合成绩:
∴三位选手按综合成绩排名为:第一名:2号,第二名:1号,第三名:3号.
本题考查了加权平均数和一元一次方程的应用,熟知加权平均数的计算公式是解题的关键.
15、(1)见解析(2)成立
【解析】
试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.
(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可
得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.
试题解析:(1)在正方形ABCD中,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE=CF
∵∠GCE=∠GCF, GC=GC
∴△ECG≌△FCG(SAS).
∴GE=GF.
∴GE=DF+GD=BE+GD.
考点:1.正方形的性质;2.全等三角形的判定与性质.
16、(1)(2) (3)是, 理由见解析.
【解析】
(1)利用四边形OBCD是边长为4的正方形,正方形CEFG,的性质可得答案,
(2)利用勾股定理求解的长,可得面积,
(3)分两种情况讨论,利用正方形与三角形的全等的性质,得到的坐标,根据坐标得到答案.
【详解】
解:(1) 四边形OBCD是边长为4的正方形,
正方形CEFG,
三点共线,
故答案为:
(2)由
正方形CEFG的面积
(3)如图,当在的左边时,作于,
正方形CEFG ,
四边形OBCD是边长为4的正方形,
在与中,
设
①+②得:
在直线上,
当在的右边时,同理可得:在直线上.
综上:当点E在轴上移动时,点F是在直线上运动.
本题考查的是正方形的性质,三角形的全等的判定与性质,勾股定理的应用,点的移动轨迹问题,即点在一次函数的图像上移动,掌握以上知识是解题的关键.
17、问题背景:EF=BE+DF,理由见解析;探索延伸:结论仍然成立,理由见解析;实际应用:210海里.
【解析】
问题背景:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
探索延伸:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
实际应用:连接EF,延长AE、BF相交于点C,然后与(2)同理可证.
【详解】
问题背景:EF=BE+DF,证明如下:
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF,
故答案为 EF=BE+DF;
探索延伸:结论EF=BE+DF仍然成立,
理由:延长FD到点G.使DG=BE,连结AG,如图2,
在△ABE和△ADG中,,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
实际应用:如图3,连接EF,延长AE、BF相交于点C,
∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,
∴∠EOF=∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=2×(45+75)=260(海里),
答:此时两舰艇之间的距离是260海里.
本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.
18、(1),;(2)40.5
【解析】
(1)把交点的坐标代入两个函数解析式计算即可得解;
(2)设直线与交于点,则,一次函数与,分别交于点、,求出、两点的坐标,再根据三角形的面积公式列式计算即可.
【详解】
解:(1)正比例函数的图象与一次函数的图象交于点,
,,
解得,;
(2)如图,设直线与交于点,则.
一次函数的解析式为.
设直线与,分别交于点、,
当时,,
.
当时,,解得,
.
.
本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
解:∵1,3,x,1,5,它的平均数是3,
∴(1+3+x+1+5)÷5=3,
∴x=4,
∴S1=[(1﹣3)1+(3﹣3)1+(4﹣3)1+(1﹣3)1+(5﹣3)1]=1;
∴这个样本的方差是1.
故答案为1.
20、2x
【解析】
根据分式的除法法则进行计算即可.
【详解】
故答案为:.
本题考查了分式除法运算,掌握分式的除法法则是解题的关键.
21、2s
【解析】
设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.
【详解】
如图,设t秒后,四边形APQB为平行四边形,
则AP=t,QC=2t,BQ=6-2t,
∵AD∥BC,
∴AP∥BQ,
当AP=BQ时,四边形ABQP是平行四边形,
∴t=6-2t,
∴t=2,
当t=2时,AP=BQ=2<BC<AD,符合.
综上所述,2秒后四边形ABQP是平行四边形.
故答案为2s.
此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.
22、
【解析】
根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数为30°,通过构造直角三角形求出MN.
【详解】
解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,
∴PM=AB=2,PN=DC=2,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,
∴∠MPD=∠ABD=20°,∠BPN=∠BDC=80°,
∴∠MPN=∠MPD+∠NPD=20°+(180-80)°=120°,
∴∠PMN==30°.
过P点作PH⊥MN,交MN于点H.
∵HQ⊥MN,
∴HQ平分∠MHN,NH=HM.
∵MP=2,∠PMN=30°,
∴MH=PM•cs60°=,
∴MN=2MH=2.
本题考查了三角形中位线定理及等腰三角形的判定和性质、30°直角三角形性质,解题时要善于根据已知信息,确定应用的知识.
23、
【解析】
如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.
【详解】
解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.
∵AB=AC=4,,
∴CH=1,AH=NB=
,BC=2,
∵AM∥BC,
∴∠M=∠DBC,
在△ADM和△CDB中,
,
∴△ADM≌△CDB(AAS),
∴AM=BC=2,DM=BD,
在RT△BMN中,∵BN=,MN=3,
∴,
∴BD=DM=,
∵BC=CD=BE=DE=2,
∴四边形EBCD是菱形,
∴EC⊥BD,BO=OD=,EO=OC,
∵AD=DC,
∴AE∥OD,AE=2OD=.
故答案为.
本题考查翻折变换、全等三角形的判定和性质、菱形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是添加辅助线构造全等三角形,学会转化的数学数学,利用三角形中位线发现AE=2OD,求出OD即可解决问题,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、.
【解析】
先把二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.
【详解】
解:原式
.
本题考查了二次根式的混合运算,解题关键在于结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径.
25、1米
【解析】
设旗杆的高度为x米,则绳长为(x+1)米,根据勾股定理即可得出关于x的一元一次方程,解之即可得出结论.
【详解】
设旗杆的高度为x米,则绳长为(x+1)米,
根据题意得:(x+1)2=x2+52,即2x-24=0,
解得:x=1.
答:旗杆的高度是1米.
此题考查勾股定理的应用,解一元一次方程,根据勾股定理列出关于x的一元一次方程是解题的关键.
26、(1)y=﹣x+4,;(2)S=2x(0<x≤3).
【解析】
(1)把B(3,1)分别代入y=﹣x+b和y=kx即可得到结论;
(2)根据三角形的面积公式即可得到结论.
【详解】
(1)把B(3,1)分别代入y=﹣x+b和y=kx得1=﹣3+b,1=3k,解得:b=4,k,∴y=﹣x+4,yx;
(2)∵点P(x,y)是线段AB上一点,∴S•xP2x(0<x≤3).
本题考查了两直线相交或平行,三角形面积的求法,待定系数法确定函数关系式,正确的理解题意是解题的关键.
题号
一
二
三
四
五
总分
得分
序号
笔试成绩/分
面试成绩/分
相关试卷
这是一份2025届江苏省扬州市江都区江都实验中学九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省扬州市江都区江都区实验初级中学数学九年级第一学期开学考试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省扬州市江都区数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

