终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省盐城市大丰市创新英达学校2024年数学九年级第一学期开学综合测试试题【含答案】

    立即下载
    加入资料篮
    江苏省盐城市大丰市创新英达学校2024年数学九年级第一学期开学综合测试试题【含答案】第1页
    江苏省盐城市大丰市创新英达学校2024年数学九年级第一学期开学综合测试试题【含答案】第2页
    江苏省盐城市大丰市创新英达学校2024年数学九年级第一学期开学综合测试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省盐城市大丰市创新英达学校2024年数学九年级第一学期开学综合测试试题【含答案】

    展开

    这是一份江苏省盐城市大丰市创新英达学校2024年数学九年级第一学期开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,中,,,将绕点逆时针旋转得到,若点的对应点落在边上,则旋转角为( )
    A.B.C.D.
    2、(4分)如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB,AD的垂线段PE,PF,则PE+PF等于( )
    A.6B.3C.1.5D.0.75
    3、(4分)下列各组长度的线段(单位:)中,成比例线段的是( )
    A.1,2,3,4B.1,2,3,6C.2,3,4,5D.1,3,5,10
    4、(4分)如图,将绕点按逆时针方向旋转得到(点的对应点是点,点的对应点是点),连接,若,则的度数为( )
    A.B.C.D.
    5、(4分)如图,在菱形ABCD中,对角线AC、BD相较于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长为( )
    A.5B.C.D.
    6、(4分)某边形的每个外角都等于与它相邻内角的,则的值为( )
    A.7B.8C.10D.9
    7、(4分)若点在反比例函数的图像上,则下列各点一定在该图像上的是( )
    A.B.C.D.
    8、(4分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是( )
    A.20B.24C.40D.48
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)列不等式:据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天的气温t(℃)的变化范围是______.
    10、(4分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.
    11、(4分)如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为__.
    12、(4分)反比例函数与一次函数图象的交于点,则______.
    13、(4分)某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
    15、(8分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.
    (1)求反比例函数的解析式;
    (2)过点作轴的平行线,点在直线上运动,点在轴上运动.
    ①若是以为直角顶点的等腰直角三角形,求的面积;
    ②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)
    16、(8分) “母亲节”前夕,某花店用3000元购进了第一批盒装花,上市后很快售完,接着又用4000元购进第二批盒装花.已知第二批所购花的进价比第一批每盒少3元,且数量是第一批盒数的1.5倍.问第一批盒装花每盒的进价是多少元?
    17、(10分)某班进行了一次数学測验,将成绩绘制成频数分布表和频数直方图的一部分如下:
    (1)在频数分布表中,的值为________,的值为________;
    (2)将频数直方图补充完整;
    (3)成绩在分以上(含)的学生人数占全班总人数的百分比是多少?
    18、(10分)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.
    (1)试销时该品种苹果的进货价是每千克多少元?
    (2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中点,若AC=6,则DE的长为 _____________
    20、(4分)若关于x的方程+=0有增根,则m的值是_____.
    21、(4分)如图,正方形ABCD的边长为10,点A的坐标为,点B在y轴上.若反比例函数的图像经过点C,则k的值为_____.
    22、(4分)若a2﹣5ab﹣b2=0,则的值为_____.
    23、(4分)若是一个完全平方式,则的值等于_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:
    (1)直接写出y甲,y乙关于x的函数关系式;
    (2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?
    25、(10分)已知是不等式的一个负整数解,请求出代数式的值.
    26、(12分)周末,小明、小刚两人同时各自从家沿直线匀速步行到科技馆参加科技创新活动,小明家、小刚家、科技馆在一条直线上.已知小明到达科技馆花了20分钟.设两人出发(分钟)后,小明离小刚家的距离为(米),与的函数关系如图所示.
    (1)小明的速度为 米/分, ,小明家离科技馆的距离为 米;
    (2)已知小刚的步行速度是40米/分,设小刚步行时与家的距离为(米),请求出与之间的函数关系式,并在图中画出 (米)与 (分钟)之间的函数关系图象;
    (3)小刚出发几分钟后两人在途中相遇?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    先根据等腰三角形的性质求得∠ABC=∠C=70°,继而根据旋转的性质即可求得答案.
    【详解】
    ∵AB=AC,∠A=40°,
    ∴∠ABC=∠C=(180°-∠A)=×140°=70°,
    ∵△EBD是由△ABC旋转得到,
    ∴旋转角为∠ABC=70°,
    故选C.
    本题考查了等腰三角形的性质,旋转的性质,熟练掌握相关知识是解题的关键.
    2、B
    【解析】
    菱形ABCD的周长为16,4, 菱形面积为12,BC边上的高为3,
    ∠ABD=∠CBD,P到BC距离等于h=PE,PE+PF=h+PF=3.所以选B.
    点睛:菱形的面积公式有两个:
    ( 1)知道底和高,按照平行四边形的面积公式计算:S=ah.
    (2)知道两条对角线的长a和b,面积S=.
    3、B
    【解析】
    根据成比例线段的概念,对选项一一分析,排除错误答案.
    【详解】
    A、1×4≠2×3,故选项错误;
    B、1×6=2×3,故选项正确;
    C、2×5≠3×4,故选项错误;
    D、1×10≠3×5,故选项错误.
    故选B.
    本题考查成比例线段的概念.对于四条线段,如果其中两条线段的长度的比与另两条线段的长度的比相等,那么,这四条线段叫做成比例线段.注意用最大的和最小的相乘,中间两数相乘.
    4、B
    【解析】
    根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.
    【详解】
    解:
    如图示,将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,
    ∴∠BAB′=∠CAC′=120°,AB=AB′,
    ∴,
    ∵AC′∥BB′,
    ∴∠C′AB′=∠AB′B=30°,
    故选:B.
    本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.
    5、C
    【解析】
    在中,根据求出OC,再利用面积法可得,由此求出AE即可.
    【详解】
    四边形ABCD是菱形,,
    ,,
    在中,,

    故,
    解得:.
    故选C.
    此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.
    6、C
    【解析】
    设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.
    【详解】
    设内角为x,则相邻的外角为x,
    由题意得,x +x=180°,
    解得,x=144°,
    360°÷36°=10
    故选:C.
    本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.
    7、C
    【解析】
    将点(-1,2)代入反比例函数,求得,再依次将各个选项代入解析式,即可求解.
    【详解】
    解:将点(-1,2)代入中,解得:,
    ∴ 反比例函数解析式为,
    时,,A错误;
    时,,B错误;
    时,,C正确;
    时,,D错误;
    故选C.
    本题考查反比例函数,难度一般,熟练掌握反比例函数上的点一定满足函数解析式,即可顺利解题.
    8、A
    【解析】
    分析:由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.
    详解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,
    则AB==5,
    故这个菱形的周长L=4AB=1.
    故选A.
    点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、25≤t≤1.
    【解析】
    根据题意、不等式的定义解答.
    【详解】
    解:由题意得,当天的气温t(℃)的变化范围是25≤t≤1,
    故答案为:25≤t≤1.
    本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,
    10、2.
    【解析】
    以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.
    【详解】
    以BC为边作等边三角形BCG,连接FG,AG,
    作GH⊥AC交AC的延长线于H,
    ∵△BDE和△BCG是等边三角形,
    ∴DC=EG,
    ∴∠FDC=∠FEG=120°,
    ∵DF=EF,
    ∴△DFC≌△EFG(SAS),
    ∴FC=FG,
    ∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,
    ∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,
    ∵BC=CG=AB=2,AC=2,
    在Rt△CGH中,∠GCH=30°,CG=2,
    ∴GH=1,CH=,
    ∴AG= ==2,
    ∴AF+CF的最小值是2.
    此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.
    11、答案为:y=﹣2x+3.
    【解析】【分析】设直线l的函数解析式为y=kx+b,先由平行关系求k,再根据交点求出b.
    【详解】设直线l的函数解析式为y=kx+b,
    因为,直线l与直线y=﹣2x+1平行,
    所以,y=﹣2x+b,
    因为,与直线y=﹣x+2的交点纵坐标为1,
    所以,1=﹣x+2,x=1
    所以,把(1,1)代入y=-2x+b,解得b=3.
    所以,直线l的函数解析式为:y=﹣2x+3.
    故答案为:y=﹣2x+3.
    【点睛】本题考核知识点:一次函数解析式. 解题关键点:熟记一次函数的性质.
    12、-1
    【解析】
    试题分析:将点A(-1,a)代入一次函数可得:-1+2=a,则a=1,将点A(-1,1)代入反比例函数解析式可得:k=1×(-1)=-1.
    考点:待定系数法求反比例函数解析式
    13、1
    【解析】
    由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.
    【详解】
    ∵多边形的一个顶点出发的对角线共有(n-3)条,
    ∴n-3=3,
    ∴n=6,
    ∴内角和=(6-2)×180°=1°,
    故答案是:1.
    本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.
    三、解答题(本大题共5个小题,共48分)
    14、每月实际生产智能手机1万部.
    【解析】
    分析:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.
    详解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,
    根据题意得:,
    解得:x=20,
    经检验,x=20是原方程的解,且符合题意,
    ∴(1+50%)x=1.
    答:每月实际生产智能手机1万部.
    点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    15、(1);(2)①或.②1或2.
    【解析】
    (1)设的坐标分别为,根据三角形的面积,构建方程即可解决问题.
    (2)①分两种情形画出图形:当点P在线段BM上,当点P在线段BM的延长线上时,分别利用全等三角形的性质求解即可.
    ②当点Q是等腰三角形的直角顶点时,分两种情形分别求解即可.
    【详解】
    解:(1))∵四边形OACD是正方形,边长为3,
    ∴点B的纵坐标为3,点E的横坐标为3,
    ∵反比例函数的图象交AC,CD于点B,E,
    设的坐标分别为.
    ∵S△OBE=4,
    可得,.
    解得,,(舍).
    所以,反比例函数的解析式为.
    (2))①如图1中,设直线m交OD于M.
    由(1)可知B(1,3),AB=1,BC=2,
    当PC=PQ,∠CPQ=90°时,
    ∵∠CBP=∠PMQ=∠CPQ=90°,
    ∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,
    ∴∠PCB=∠MPQ,∵PC=PQ,
    ∴△CBP≌△PMQ(AAS),
    ∴BC=PM=2,PB=MQ=1,
    ∴PC=PQ=
    ∴S△PCQ=
    如图2中,当PQ=PC,∠CPQ=90°,
    同法可得△CBP≌△PMQ(AAS),
    ∴PM=BC=2,OM=PB=1,
    ∴PC=PQ=,
    ∴S△PCQ=.
    所以,的面积为或.
    ②当点Q是等腰三角形的直角顶点时,同法可得CQ=PQ=,此时S△PCQ=1.
    或CQ′=PQ′=,可得S△P′CQ′=2,
    不存在点C为等腰三角形的直角顶点,
    综上所述,△CPQ的面积除了“①”中求得的结果外,还可以是1或2.
    故答案为1或2.
    本题属于反比例函数综合题,考查了正方形的性质,反比例函数的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    16、第一批盒装花每盒的进价是27元
    【解析】
    设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.
    【详解】
    设第一批盒装花每盒的进价是x元,则第二批盒装花每盒的进价是(x﹣3)元,
    根据题意得:1.5×=,
    解得:x=27,
    经检验,x=27是所列分式方程的解,且符合题意.
    答:第一批盒装花每盒的进价是27元.
    本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.
    17、(1)10,0.1;(2)答案见解析;(3)占全班总人数百分比为.
    【解析】
    (1)先计算参加数学測验的总人数,根据a=总人数-各分数段的人的和计算即可得解,b=1-各分数段的频率的和计算即可得解;
    (2)根据(1)补全直方图;
    (3)求出成绩在分以上(含)的学生人数除以总人数即可.
    【详解】
    (1)∵参加数学測验的总人数为:
    ∴,
    (2) 如图:该直方图为所求作.
    .
    (3)成绩在分以上的学生人数为人,全班总人数为人,
    占全班总人数百分比为
    本题考查了频数(率)分布直方图及频数(率)分布表;概率公式,掌握频数分布直方图及频数分布表是解题的关键
    18、(1)试销时该品种苹果的进货价是每千克5元;(2)商场在两次苹果销售中共盈利4160元.
    【解析】
    解:(1) 设试销时该品种苹果的进货价是每千克x元

    解得x= 5
    经检验:x= 5是原方程的解,并满足题意
    答:试销时该品种苹果的进货价是每千克5元.
    (2) 两次购进苹果总重为:千克
    共盈利:元
    答:共盈利4160元.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3
    【解析】
    ∵AB=AC,AD平分∠BAC,
    ∴D是BC中点.
    ∵E是AB的中点,
    ∴DE是△ABC的中位线,
    .
    20、3
    【解析】
    分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.
    【详解】
    去分母得:2﹣x+m=0,
    解得:x=2+m,
    由分式方程有增根,得到x﹣5=0,即x=5,
    把x=5代入得:m=3,
    故答案为:3
    此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
    21、1
    【解析】
    过点作轴于,根据正方形的性质可得,,再根据同角的余角相等求出,然后利用“角角边”证明和全等,根据全等三角形对应边相等可得,,再求出,然后写出点的坐标,再把点的坐标代入反比例函数解析式计算即可求出的值.
    【详解】
    解:如图,过点作轴于,在正方形中,,,



    点的坐标为,



    在和中,


    ,,

    点的坐标为,
    反比例函数的图象过点,

    故答案为1.
    本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点的坐标是解题的关键.
    22、5
    【解析】
    由已知条件易得,,两者结合即可求得所求式子的值了.
    【详解】
    ∵,
    ∴,
    ∵,
    ∴.
    故答案为:5.
    “能由已知条件得到和”是解答本题的关键.
    23、
    【解析】
    根据完全平方公式的特点即可求解.
    【详解】
    ∵是完全平方式,即为,
    ∴.
    故答案为.
    此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y甲=0.8x(x≥0),;(2)当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.
    【解析】
    (1)利用待定系数法即可求出y甲,y乙关于x的函数关系式;
    (2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论即可.
    【详解】
    (1)设y甲=kx,把(2000,1600)代入,得2000x=1600,解得k=0.8,所以y甲=0.8x(x≥0);
    当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000x=2000,解得k=1,所以y乙=x;
    当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得: ,
    解得:.
    所以;
    (2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;
    当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;
    若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;
    若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;
    故当购买金额按原价小于6000元时,到甲商店购买更省钱;
    当购买金额按原价大于6000元时,到乙商店购买更省钱;
    当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.
    考点:一次函数的应用;分类讨论;方案型.
    25、,原式
    【解析】
    先根据分式的运算法则进行化简,再求出不等式的负整数解,最后代入求出即可.
    【详解】

    求解不等式,解得
    又当,时分式无意义 ∴
    ∴原式
    本题考查了分式的化简求值,解一元一次不等式,不等式的整数解等知识点,能求出符合题意的m值是解此题的关键.
    26、(1)60;960;1200;(2)=40(0≤≤24);见解析;(3)12分钟.
    【解析】
    (1)根据图象可求得小明的速度v1,便可得出a的值以及小明家离科技馆的距离;
    (2)根据小刚步行时的速度和小刚家离科技馆的距离,可求出解析式并画出图象;
    (3)两人离科技馆的距离相等时相遇,列出方程可求出答案.
    【详解】
    解:(1)根据图象可知小明4分钟走过的路程为240m,
    列出解析式:s1=v1x,
    代入可得240=4v1,
    解得v1=60米/分钟,
    即小明速度是60米/分钟,
    根据图象可知小明又走了16分钟到达科技馆,
    可得a=16v1,
    代入v1,可得a=960m,
    据题意小明到科技馆共用20分钟,
    可得出小明家离科技馆的距离s2=v1x2,
    解得:s2=60×20=1200m,
    故小明家离科技馆的距离为1200m;
    故答案为:60;960;1200
    (2)列出解析式:y1=40x,
    由(1)可知小刚离科技馆的距离为a=960m,
    代入可得960=40x,
    解得:x=24分钟,
    作出图象如下:
    (3)两人离科技馆的距离相等时相遇,
    当x≥4时,小明所走路程y与x的函数关系式为y=60x-240,
    则60x-240=40x,
    解得:x=12,
    即小刚出发12分钟后两人相遇.
    本题考查了一次函数的应用,有一定难度,解答本题的关键是仔细审题,同学们注意培养自己的读图能力.
    题号





    总分
    得分
    成绩
    频数(人数)
    频率

    相关试卷

    江苏省盐城市大丰市创新英达学校2025届九上数学开学达标检测模拟试题【含答案】:

    这是一份江苏省盐城市大丰市创新英达学校2025届九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省盐城市大丰市创新英达学校九上数学期末综合测试试题含答案:

    这是一份2023-2024学年江苏省盐城市大丰市创新英达学校九上数学期末综合测试试题含答案,共8页。

    2023-2024学年江苏省盐城市大丰市创新英达学校数学九上期末学业水平测试模拟试题含答案:

    这是一份2023-2024学年江苏省盐城市大丰市创新英达学校数学九上期末学业水平测试模拟试题含答案,共8页。试卷主要包含了方程的根是,如果,那么下列比例式中正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map