江苏省锡山高级中学2025届数学九年级第一学期开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)有下列说法:①平行四边形既是中心对称图形,又是轴对称图形;②正方形有四条对称轴;③平行四边形相邻两个内角的和等于;④菱形的面积计算公式,除了“底×高”之外,还有“两对角线之积”;⑤矩形和菱形均是特殊的平行四边形,因此具有平行四边形的所有性质.其中正确的结论的个数有( )
A.1B.2C.3D.4
2、(4分)若一个多边形每一个内角都是135º,则这个多边形的边数是 ( )
A.6B.8C.10D.12
3、(4分)如果不等式组有解,那么m的取值范围是
A.B.C.D.
4、(4分)已知:是整数,则满足条件的最小正整数为( )
A.2B.3C.4D.5
5、(4分)若分式 有意义,则x的取值范围是
A.x>1B.x<1C.x≠1D.x≠0
6、(4分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是( )
A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)
7、(4分)已知关于x的一元二次方程2x2﹣mx﹣4=0的一个根为m,则m的值是( )
A.2B.﹣2C.2或﹣2D.任意实数
8、(4分)化简结果正确的是( )
A.xB.1C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若已知方程组的解是,则直线y=-kx+b与直线y=x-a的交点坐标是________。
10、(4分)已知等腰三角形的周长为24,底边长y关于腰长x的函数表达式(不写出x的取值范围) 是________.
11、(4分)已知一个样本中共5个数据,其中前四个数据的权数分别为0.2,0.3,0.2,0.1,则余下的一个数据对应的权数为________.
12、(4分)如图,在△ABC中,AB=3,AC=5,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为_____.
13、(4分)如图将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR分别与AC,CD相交于点P,Q,则BP:PQ:QR=__.
三、解答题(本大题共5个小题,共48分)
14、(12分)1014年1月,国家发改委出台指导意见,要求1015年底前,所有城市原则上全面实行居民阶梯水价制度.小明为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图1.
小明发现每月每户的用水量在5m1-35m1之间,有8户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变.根据小明绘制的图表和发现的信息,完成下列问题:
(1)n= ,小明调查了 户居民,并补全图1;
(1)每月每户用水量的中位数和众数分别落在什么范围?
(3)如果小明所在的小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?
15、(8分)如图1,在中,,,,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
直接用含t的代数式分别表示:______,______;
是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.
如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
16、(8分)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:
政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.
(1)用含有x的代数式表示y;
(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;
(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.
17、(10分)如图,已知是的中线,且
求证:
若,试求和的长
18、(10分)已知一次函数,完成下列问题:
(1)在所给直角坐标系中画出此函数的图象;
(2)根据图象回答:当______时,.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形中,,,点是边上一点,若平分,则的面积为________.
20、(4分)分解因式:2x2﹣8=_____________
21、(4分)因式分解:_________.
22、(4分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.
23、(4分)化简:的结果是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形中,,,分别是,的中点,.
(1)求证:四边形是菱形;
(2)求的长.
25、(10分)如图,反比例函数y=(n为常数,n≠0)的图象与一次函数y=kx+8(k为常数,k≠0)的图象在第三象限内相交于点D(﹣,m),一次函数y=kx+8与x轴、y轴分别相交于A、B两点.已知cs∠ABO=.
(1)求反比例函数的解析式;
(2)点P是x轴上的动点,当△APC的面积是△BDO的面积的2倍时,求点P的坐标.
26、(12分)再读教材:
宽与长的比是 (约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)
第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.
第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.
第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,
第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,
问题解决:
(1)图③中AB=________(保留根号);
(2)如图③,判断四边形 BADQ的形状,并说明理由;
(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.
(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据特殊平行四边形的性质即可判断.
【详解】
①平行四边形既是中心对称图形,不是轴对称图形,故错误;②正方形有四条对称轴,正确;③平行四边形相邻两个内角的和等于,正确;④菱形的面积计算公式,除了“底×高”之外,还有“两对角线之积”,故错误;⑤矩形和菱形均是特殊的平行四边形,因此具有平行四边形的所有性质,正确.
故②③⑤正确,选C
此题主要考查特殊平行四边形的性质,解题的关键是熟知特殊平行四边形的特点与性质.
2、B
【解析】
试题分析:设多边形的边数为n,则=135,解得:n=8
考点:多边形的内角.
3、C
【解析】
在数轴上表示两个不等式的解集,若不等式组有解,则有公共部分,可求得m的取值范围.
【详解】
在数轴上分析可得,不等式组有解,则两个不等式有公共解,那么m的取值范围是.
故选:C
本题考核知识点:不等式组的解.解题关键点:理解不等式组的解的意义.
4、D
【解析】
试题解析:∵=,且是整数,
∴2是整数,即1n是完全平方数,
∴n的最小正整数为1.
故选D.
点睛:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则.除法法则.解题关键是分解成一个完全平方数和一个代数式的积的形式.
5、C
【解析】
分式分母不为0,所以,解得.
故选:C.
6、A
【解析】
分别根据点在坐标轴上坐标的特点求出对应的、的值,即可求出直线与轴、轴的交点坐标.
【详解】
令,则,
解得,
故此直线与轴的交点的坐标为;
令,则,
故此直线与轴的交点的坐标为.
故选:.
本题考查的是坐标轴上点的坐标特点,一次函数(,、是常数)的图象是一条直线,它与轴的交点坐标是;与轴的交点坐标是.
7、C
【解析】
根据一元二次方程的解的定义把代入方程得到关于m的方程,然后解关于m的方程即可.
【详解】
把x=m代入方程2x2﹣mx﹣4=0得2m2﹣m2﹣4=0,
解得m=2或m=﹣2,
故选C.
本题考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
8、B
【解析】
根据分式的加减法法则计算即可得出正确选项.
【详解】
解:=.
故选:B.
本题主要考查了分式的加减,同分母分式相加减,分母不变,分子相加减.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(-1,3)
【解析】
利用一次函数与二元一次方程组的关系,可知两一次函数的交点坐标就是两函数解析式所组成的方程组的解,可得结果.
【详解】
解:∵ 方程组 的解是 ,
∴直线y=kx−b与直线y=−x+a的交点坐标为(−1,3),
∴ 直线y=-kx+b与直线y=x-a的交点坐标为(-1,3).
故答案为:(-1,3)
本题考查了一次函数与二元一次方程(组):两一次函数的交点坐标是两函数解析式所组成的方程组的解.
10、y=24-2x
【解析】分析:根据周长等于三边之和可得出底边长y关于腰长x的函数表达式.
详解:由题意得,
y+x+x=24,
∴y=24-2x.
故答案为:y=24-2x.
点睛:本题考查了列一次函数关系式,熟练掌握周长等于三边之和是解答本题的关键.
11、0.1
【解析】
根据权数是一组非负数,权数之和为1即可解答.
【详解】
∵一组数据共5个,其中前四个的权数分别为0.1,0.3,0.1,0.1,
∴余下的一个数对应的权数为1-0.1-0.3-0.1-0.1=0.1,
故答案为:0.1.
本题考查了权数的定义,掌握权数的定义是解决本题的关键.
12、1
【解析】
根据三角形的中位线平行于第三边,并且等于第三边的一半,以及中点的定义可得DE=AF=AC,EF=AD=AB,再根据四边形的周长的定义计算即可得解.
【详解】
解:∵在△ABC中,D、E、F分别是AB、BC、AC的中点,
∴DE=AF=AC=2.5,EF=AD=AB=1.5,
∴四边形ADEF的周长是(2.5+1.5)×2=1.
故答案为:1.
本题考查了三角形中位线定理,中点的定义以及四边形周长的定义.
13、2:1:1
【解析】
根据平移的性质得到AC∥DE,BC=CE,得到△BPC∽△BRE,根据相似三角形的性质得到PC=DR,根据△PQC∽△RQD,得到PQ=QR,即可求解.
【详解】
由平移的性质可知,AC∥DE,BC=CE,
∴△BPC∽△BRE,
∴,
∴PC=RE,BP=PR,
∵DR:RE=1:2,
∴PC=DR,
∵AC∥DE,
∴△PQC∽△RQD,
∴=1,
∴PQ=QR,
∴BP:PQ:QR=2:1:1,
故答案为2:1:1.
本题考查了相似三角形的判定和性质,平移的性质,掌握相似三角形的判定定理和性质定理是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)110 , 96;(1)15m3-10m3,10m3-15m3;(3)1050户
【解析】
解:(1)n=360-30-110=110,
∵8÷=96(户)
∴小明调查了96户居民.
每月每户的用水量在15m3-10m3之间的居民的户数是:
96-(15+11+18+16+5)
=96-76
=10(户);
补图如下:
故答案为110,96;
(1)∵共有96个数据,
∴每月每户用水量的中位数为第48、49两个数据的平均数,即中位数落在15m3-10m3,
由条形图知,10m3-15m3的数据最多,∴众数落在10m3-15m3,
故答案为15m3-10m3,10m3-15m3;
(3)根据题意得:
1800×=1050(户),
答:视调价涨幅采取相应的用水方式改变”的居民户数有1050户.
15、(1),;(2)详见解析;(3)2
【解析】
由根据路程等于速度乘以时间可得,,,则,根据,,可得:,根据相似三角形的判定可得:∽,再根据相似三角形的性质可得:
,即,从而解得:,
(2)根据,当时,可判定四边形PDBQ为平行四边形,根据平行四边形的性质可得:,解得:,
(3)根据题意可得:,当时,点的坐标为,当时,点的坐标为,
设直线的解析式为:,则,解得:,因此直线的解析式为:,再根据题意得:点P的坐标为,点Q的坐标为,因此在运动过程中PQ的中点M的坐标为,当时,,因此点M在直线上,作轴于N,则,,由勾股定理得,,
因此线段PQ中点M所经过的路径长为.
【详解】
由题意得,,,
则,
,,
,
∽,
,即,
解得:,
故答案为:,,
存在,
,
当时,四边形PDBQ为平行四边形,
,
解得:,
则当时,四边形PDBQ为平行四边形,
以点C为原点,以AC所在的直线为x轴,建立如图2所示的平面直角坐标系,
由题意得:,
当时,点的坐标为,
当时,点的坐标为,
设直线的解析式为:,
则,
解得:,
直线的解析式为:,
由题意得:点P的坐标为,点Q的坐标为,
在运动过程中PQ的中点M的坐标为,
当时,,
点M在直线上,
作轴于N,
则,,
由勾股定理得,,
线段PQ中点M所经过的路径长为.
本题主要考查几何动点问题,解决本题的关键是要准确找出动点运动路线,动点运动长度与运动时间的关系,并结合几何图形中的等量关系列方程进行解答.
16、(1)y;(2)3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)能
【解析】
试题分析:(1)根据总价=单价×数量,即可得到结果;
(2)根据幸福村共有264户村民,沼气池修建用地708平方米,即可列不等式组求解;
(3)先根据一次函数的性质求得最少费用,与村民每户集资700元与政府补助共计的费用比较即可判断.
(1) ;
(2)由题意得
解①得x≥12
解②得x≤14
∴不等式的解为12≤x≤14
是正整数
∴x的取值为12,13,14
即有3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个 ;
(3)∵y=x+40中,随的增加而增加,要使费用最少,则x=12
∴最少费用为y=x+40=52(万元)
村民每户集资700元与政府补助共计:700×264+340000=524800>520000
∴每户集资700元能满足所需要费用最少的修建方案.
考点:本题考查的是一元一次不等式组的应用
点评:解答本题的关键是读懂题意,找准不等关系列出不等式组,并注意未知数的取值是正整数.
17、(1)见解析;(2)
【解析】
(1)通过利用等角的补角相等得到,又已知,即可得证
(2)AD为中线,得到DC=4,又易证,利用比例式求出AC,再由(1)得到,列出比例式可得到AD
【详解】
证明:
解:是的中线
由得
本题主要考查相似三角形的判定与性质,第二问的关键在于找到相似三角形,利用对应边成比例求出线段
18、(1)答案见解析;(2)<1.
【解析】
(1)作出函数图象即可;
(2)观察图象即可求解.
【详解】
(1)画图如下:
(2)由图可知,当x<1时,y>1.
本题考查了一次函数图象与性质,一次函数与不等式之间的关系,利用数形结合思想解题是解决此类题型的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
首先根据矩形的性质和角平分线的性质得到EA=DA,从而求得BE,然后利用三角形的面积公式进行计算即可.
【详解】
解:∵四边形ABCD是矩形,
∴AD∥BC,AD=BC=5,CD=AB=3,
∴∠CED=∠ADE,
∵ED平分∠AEC,
∴∠AED=∠CED,
∴∠EDA=∠AED,
∴AD=AE=5,
∴BE=,
∴△ABE的面积=BE•AB=×4×3=1;
故答案为:1.
本题考查了矩形的性质,勾股定理等,了解矩形的性质是解答本题的关键,难度不大.
20、2(x+2)(x﹣2)
【解析】
先提公因式,再运用平方差公式.
【详解】
2x2﹣8,
=2(x2﹣4),
=2(x+2)(x﹣2).
考核知识点:因式分解.掌握基本方法是关键.
21、
【解析】
直接提取公因式即可.
【详解】
.
故答案为:.
本题考查了因式分解——提取公因式法,掌握知识点是解题关键.
22、
【解析】
先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
【详解】
如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴BC=AB=2,BF=AF=AB=1,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=2,
在Rt△ADF中,根据勾股定理得,DF==
∴CD=BF+DF-BC=1+-2=-1,
故答案为-1.
此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
23、-2
【解析】
化简二次根式并去括号即可.
【详解】
解:
故答案为:-2
本题考查了二次根式的混合运算,计算较为简单,熟练掌握二次根式的化简是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)
【解析】
(1)由平行四边形的性质得出AD∥BC,AD=BC,证出DE∥CF,DE=CF,得出四边形CDEF是平行四边形,证出CD=CF,即可得出四边形CDEF是菱形;
(2)连接DF,证明△CDF是等边三角形,得出∠CDF=∠CFD=60°,求出∠BDF=30°,证出∠BDC=∠BDF+∠CDF=90°,由勾股定理即可得出答案.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵E,F分别是AD,BC的中点,
∴DE=AD,CF=BC,
∴DE∥CF,DE=CF,
∴四边形CDEF是平行四边形,
又∵BC=2CD,
∴CD=CF,
∴四边形CDEF是菱形;
(2)如图,连接,
,,
是等边三角形,
,,.
是的中点,
,
.
,
.
,
.
本题考查的是菱形的判定与性质、平行四边形的判定和性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.
25、(1)y=x+1,y=(2)(﹣11,0)或(6,0)
【解析】
(1)求得A(﹣6,0),即可得出一次函数解析式为y=x+1,进而得到D(,﹣2),即可得到反比例函数的解析式为y=;
(2)解方程组求得C(,10),依据△APC的面积是△BDO的面积的2倍,即可得到AP=12,进而得到P(﹣11,0)或(6,0).
【详解】
解:(1)∵一次函数y=kx+1与y轴交于点B,
∴B(0,1).
∵在Rt△AOB中,cs∠ABO=,
∴tan∠BAO=,
∴AO=6,
∴A(﹣6,0).
∵点A在一次函数y=kx+1图象上,
∴k=,
∴一次函数解析式为y=x+1.
∵点D(,m)在一次函数y=kx+1图象上,
∴m=﹣2,
即D(,﹣2),
∵点D(,﹣2)在反比例函数y=图象上,
∴n=2.
∴反比例函数的解析式为y=;
(2)∵点C是反比例函数y=图象与一次函数y=x+1图象的交点,
∴,解得,
∴C(,10).
∵△APC的面积是△BDO的面积的2倍,
∴AP×10=×1×,
∴AP=12,
又∵A(﹣6,0),点P是x轴上的动点,
∴P(﹣11,0)或(6,0).
本题考查反比例函数与一次函数的交点、用待定系数法求函数解析式、三角函数、三角形面积的计算等知识;求出点A和D的坐标是解决问题的关键.
26、(1);(2)见解析;(3) 见解析; (4) 见解析.
【解析】
分析:(1)由勾股定理计算即可;
(2)根据菱形的判定方法即可判断;
(3)根据黄金矩形的定义即可判断;
(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.
详解:(1)如图3中.在Rt△ABC中,AB===.
故答案为.
(2)结论:四边形BADQ是菱形.理由如下:
如图③中,∵四边形ACBF是矩形,∴BQ∥AD.
∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.
(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.
∵AD=.AN=AC=1,CD=AD﹣AC=﹣1.
∵BC=2,∴=,∴矩形BCDE是黄金矩形.
∵==,∴矩形MNDE是黄金矩形.
(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.
长GH=﹣1,宽HE=3﹣.
点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.
题号
一
二
三
四
五
总分
得分
沼气池
修建费用(万元/个)
可供使用户数(户/个)
占地面积(m2/个)
A型
3
20
48
B型
2
3
6
江苏省无锡锡山区锡东片2024年九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份江苏省无锡锡山区锡东片2024年九年级数学第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡市锡山区2024-2025学年数学九上开学调研试题【含答案】: 这是一份江苏省无锡市锡山区2024-2025学年数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡市锡山高级中学2025届数学九年级第一学期开学监测试题【含答案】: 这是一份江苏省无锡市锡山高级中学2025届数学九年级第一学期开学监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。