江苏省无锡市江阴市澄东片2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE、OF、EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,则直线FE的函数解析式为.其中正确结论的个数是( )
A.2B.3C.4D.5
2、(4分)在平面直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是( )
A.点A与点B(﹣3,﹣4)关于y轴对称
B.点A与点C(3,﹣4)关于x轴对称
C.点A与点E(﹣3,4)关于第二象限的平分线对称
D.点A与点F(3,﹣4)关于原点对称
3、(4分)如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC
重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )
A.3B.4
C.5D.6
4、(4分)下列事件中必然事件有( )
①当x是非负实数时,≥0;
②打开数学课本时刚好翻到第12页;
③13个人中至少有2人的生日是同一个月;
④在一个只装有白球和绿球的袋中摸球,摸出黑球.
A.1个B.2个C.3个D.4个
5、(4分)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )
A.平均数B.中位数C.众数D.方差
6、(4分)如图,在中,已知,分别为边,的中点,连结,若,则等于( )
A.70ºB.67. 5ºC.65ºD.60º
7、(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,,,则BD的长是
A.2B.5C.6D.4
8、(4分)若二次函数的图象经过点P(-2,4),则该图象必经过点( )
A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分) “折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.
10、(4分)如图,在梯形中, ,对角线,且,则梯形的中位线的长为_________.
11、(4分)如图,边长为的菱形中,,连接对角线,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…按此规律所作的第2019个菱形的边长为______.
12、(4分)若正多边形的每一个内角为,则这个正多边形的边数是__________.
13、(4分)已知直线y=kx过点(1,3),则k的值为____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)从直方图中你能得到什么信息?(写出两条即可)
(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?
15、(8分)求证:有一组对边平行,和一组对角相等的四边形是平行四边形.(请画出图形,写出已知、求证并证明)
16、(8分)大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.
(1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?
(2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?
17、(10分)已知一次函数的图象过点,且与一次函数的图象相交于点.
(1)求点的坐标和函数的解析式;
(2)在平面直角坐标系中画出,的函数图象;
(3)结合你所画的函数图象,直接写出不等式的解集.
18、(10分)如图,点A的坐标为(﹣,0),点B的坐标为(0,3).
(1)求过A,B两点直线的函数表达式;
(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在▱ABCD中,若∠A=63°,则∠D=_____.
20、(4分)今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.
21、(4分)一组数据2,3,3,1,5的众数是_____.
22、(4分)如图,在中,,,将绕点顺时针旋转,点、旋转后的对应点分别是点和,连接,则的度数是______.
23、(4分)化简:=_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)小张是个“健步走”运动爱好者,他用手机软件记录了近阶段每天健步走的步数,并将记录结果绘制成了如下统计表:
求小张近阶段平均每天健步走的步数.
25、(10分)如图,AC是平行四边形ABCD的一条对角线,过AC中点O的直线分别交 AD,BC 于点 E,F.
(1)求证:四边形AECF是平行四边形;
(2)当 EF 与 AC 满足什么条件时,四边形 AECF 是菱形?并说明理由.
26、(12分) 某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
①通过证明全等判断,②④只能确定为等腰三角形,不能确定为等边三角形,据此判断正误,③通过判断,⑤作于点M通过直角三角形求出E、F坐标从而求得直线解析式.
【详解】
∵点E、F都在反比例函数的图像上,
∴,即 ,
∵四边形是正方形,
∴,
∴
∴,
∴,①正确;
∵
∴,
∵k的值不能确定,
∴的值不能确定,②错误;
∴只能确定为等腰三角形,不能确定为等边三角形,
∴ ,,
∴ ,, ④错误;
∵,
∴ ,
∴,③正确;
作于点M,如图
∵,为等腰直角三角形,,
设,则 ,
在中, ,
即,解得 ,
∴ ,
在正方形中, ,
∴ ,即为等腰直角三角形,
∴,
设正方形的边长为,则,
在中, ,
即,解得
∴ ,
∴
∴
设直线的解析式为,过点
则有 解得
故直线的解析式为;⑤正确;
故正确序号为①③⑤,选 .
本题考查了反比例函数与正方形的综合运用,解题的关键在于利用函数与正方形的相关知识逐一判断正误.
2、D
【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反;关于第二象限角平分线的对称的两点坐标的关系,纵横坐标交换位置且变为相反数可得答案.
【详解】
解:A、点A的坐标为(-3,4),∴则点A与点B(-3,-4)关于x轴对称,故此选项错误;
B、点A的坐标为(-3,4),∴点A与点C(3,-4)关于原点对称,故此选项错误;
C、点A的坐标为(-3,4),∴点A与点E(-3,4)重合,故此选项错误;
D、点A的坐标为(-3,4),∴点A与点F(3,-4)关于原点对称,故此选项正确;
故选D.
此题主要考查了关于xy轴对称点的坐标点的规律,以及关于原点对称的点的坐标特点,关键是熟练掌握点的变化规律,不要混淆.
3、D
【解析】
试题分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.
解:∵四边形ABCD是矩形,AD=8,
∴BC=8,
∵△AEF是△AEB翻折而成,
∴BE=EF=3,AB=AF,△CEF是直角三角形,
∴CE=8﹣3=5,
在Rt△CEF中,CF===4,
设AB=x,
在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,
故选D.
考点:翻折变换(折叠问题);勾股定理.
4、B
【解析】
根据必然事件、不可能事件、随机事件的概念判断即可.
【详解】
①当x是非负实数时,0,是必然事件;
②打开数学课本时刚好翻到第12页,是随机事件;
③13个人中至少有2人的生日是同一个月,是必然事件;
④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件.
必然事件有①③共2个.
故选B.
本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、C
【解析】
此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.
【详解】
解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,
∴鞋店最喜欢的是众数.
故选C.
考点:统计量的选择.
6、A
【解析】
由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出的度数.
【详解】
∵D,E分别为AB,AC的中点,
∴DE是三角形的中位线,
∴DE∥BC,
∴∠AED=∠C=70°,
故选A
此题考查平行线的性质,三角形中位线定理,难度不大
7、D
【解析】
根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=2,然后由BD=2OB求解即可.
【详解】
解:∵四边形ABCD是矩形,
∴OA=OB=OC=OD,∠BAD=90°,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴OB=AB=2,
∴BD=2BO=4,
故选D.
本题考查了矩形的性质、等边三角形的判定与性质,熟练掌握矩形的性质是解题的关键.
8、A
【解析】
根据点在曲线上,点的坐标满足方程的关系,将P(-2,4)代入,得,
∴二次函数解析式为.
∴所给四点中,只有(2,4)满足.故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4.1.
【解析】
根据题意结合勾股定理得出折断处离地面的长度即可.
【详解】
解:
设折断处离地面的高度OA是x尺,根据题意可得:
x1+41=(10﹣x)1,
解得:x=4.1,
答:折断处离地面的高度OA是4.1尺.
故答案为:4.1.
本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.
10、1
【解析】
解:过C作CE∥BD交AB的延长线于E,
∵AB∥CD,CE∥BD,
∴四边形DBEC是平行四边形,
∴CE=BD,BE=CD
∵等腰梯形ABCD中,AC=BD∴CE=AC
∵AC⊥BD,CE∥BD,
∴CE⊥AC
∴△ACE是等腰直角三角形,
∵AC=,
∴AE =AC=10,
∴AB+CD =AB+BE=10,
∴梯形的中位线=AE=1,
故答案为:1.
本题考查了梯形的中位线定理,牢记定理是解答本题的重点,难点是题目中的辅助线的做法.
11、
【解析】
根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律根据规律不难求得第2019个菱形的边长.
【详解】
连接DB交AC于M点,
∵四边形ABCD是菱形,
∴AD=AB.AC⊥DB,
∵∠DAB=60°,
∴△ADB是等边三角形,
∴DB=AD=1,
∴BM=,
∴AM=,
∴AC=2AM=,
同理可得AC1=AC=()2,AC2=AC1=3=()3,
按此规律所作的第n个菱形的边长为()n-1,
当n=2019时,第2019个菱形的边长为()2018,
故答案为.
本题考查了菱形的性质、含30°角的直角三角形的运用;根据第一个和第二个菱形的边长得出规律是解决问题的关键.
12、八(或8)
【解析】
分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.
详解:根据正多边形的每一个内角为,
正多边形的每一个外角为:
多边形的边数为:
故答案为八.
点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.
13、1
【解析】
将点(1,1)代入函数解析式即可解决问题.
【详解】
解:∵直线y=kx过点(1,1),
∴1=k,
故答案为:1.
本题主要考查了一次函数图象上点的坐标特征,解决问题的关键是将点的坐标代入解析式,利用方程解决问题.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)答案不唯一;(3)我觉得家庭月均用水量应该定为5吨
【解析】
(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与 6.5<x≤8.0 的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;
(2)从直方图可以看出:居民月平均用水量大部分在2.0至6.5之间;居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;
居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.
(3)根据共有50个家庭,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨,即可得出答案.
【详解】
(1)(1)5.0<x≤6.5共有13个,则频数是13,
6.5<x≤8.0共有5个,则频数是5,
填表如下:
如图:
(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;
③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.
(3)因为在2.0至5.0之间的用户数为11+19=30,而30÷50=0.6,所以要使60%的家庭收费不受影响,我觉得家庭月均用水量应该定为5吨.
本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
15、证明见解析.
【解析】
已知条件的基础上,根据平行四边形的判定方法,只需证明另一组对边平行或另一组对角相等.
【详解】
已知:如图,四边形ABCD中, AB∥CD, ∠A=∠C.
求证:四边形ABCD是平行四边形.
证明:∵AB∥CD,
∴∠A+∠D=180°,
∠B+∠C=180°,
∵∠A=∠C,
∴∠B=∠D ,
∴四边形ABCD是平行四边形.
16、 (1);(2).
【解析】
试题分析:(1)求出第二次转到95的可能性,即为两次数字之和为100的可能性;
(2)求出转到数字在35以上的总个数,利用所求情况数(35以上的总个数)与总情况数(20)作比即可.
(1)由题意分析可得:要使他两次数字之和为100,则第二次必须转到95,因为总共有20个数字,所以他两次数字之和为100的可能性为 .
(2)由题意分析可得:转到数字35以上就会“爆掉”,共有13种情况,因为总共有20个数字,所以“爆掉”的可能性为.
点睛:本题考查了可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.
17、(1),;(2)见解析;(3).
【解析】
(1)将P(2,m)代入y2=x+1,求出m=3,再把(2,3),(0,-2)代入求出k,b的值即可;
(2)找出两点画出直线即可;
(3)根据画出的函数图象求解即可.
【详解】
(1)把点代入得,
,
∴,
把,代入得,
,
;
(2)经过点,作直线,即为的图象,
经过点,作直线,即为的图象,
如图所示:
(3)由图象知,不等式的解集为:.
本题考查了一次函数与一元一次不等式的关系,也考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的图象与性质等知识.
18、(1)过A,B两点的直线解析式为y=2x+3;
(2)△ABP的面积为或.
【解析】
(1)设直线l的解析式为y=ax+b,把A、B的坐标代入求出即可;
(2)分为两种情况:①当P在x轴的负半轴上时,②当P在x轴的正半轴上时,求出AP,再根据三角形面积公式求出即可.
【详解】
解:(1)设过A,B两点的直线解析式为y=ax+b(a≠0),
则根据题意,得,
解得:,
则过A,B两点的直线解析式为y=2x+3;
(2)设P点坐标为(x,0),依题意得x=±3,
∴P点坐标分别为P1(3,0),P2(﹣3,0),
=,
=,
故△ABP的面积为或.
本题考查了用待定系数法求一次函数的解析式,三角形的面积,解二元一次方程组等知识点的应用,关键是能求出符合条件的两种情况.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、117°
【解析】
根据平行线的性质即可解答
【详解】
ABCD为平行四边形,
所以,AB∥DC,
所以,∠A+∠D=180°,
∠D=180°-63°=117°。
此题考查平行线的性质,解题关键在于利用同旁内角等于180°
20、1
【解析】
根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.
【详解】
解:这个调查的样本是1名考生的数学成绩,故样本容量是1.
故答案为1.
本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.
21、3
【解析】
根据众数的定义进行求解即可得.
【详解】
数据2,3,3,1,5中数据3出现次数最多,
所以这组数据的众数是3,
故答案为3.
本题考查了众数,熟练掌握众数的定义以及求解方法是解题的关键.
22、35°
【解析】
由旋转的性质可得AB=AD,∠BAD=70°,由等腰三角形的性质和直角三角形的性质可求解.
【详解】
∵将△ABC绕点A顺时针旋转70°,
∴AB=AD,∠BAD=70°, ∠AED=90°
∴∠ABD=55°
∵∠BED=∠AED =90°
∴∠BDE=35°
故答案为35°
本题考查了旋转的性质,等腰三角形的性质和直角三角形的性质,熟练运用旋转的性质是本题的关键.
23、
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
解:原式=.
故答案为:.
此题主要考查了实数运算,正确掌握二次根式的性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、1.22万步
【解析】
直接利用表中数据,结合加权平均数求法得出答案.
【详解】
解:由题意可得,(1.1×3+1.2×2+1.3×5)=1.22(万步),
答:小张近阶段平均每天健步走的步数为1.22万步.
此题主要考查了加权平均数,正确利用表格中数据是解题关键.
25、(1)见解析;(2)当EF⊥AC时,四边形 AECF 是菱形,理由见解析
【解析】
(1)连接AF,CE,证明△AOE≌△COF,得到AE=CF,利用一组对边平行且相等的四边形是平行四边形;
(2)根据对角线互相垂直的平行四边形是菱形,即可得出结论.
【详解】
(1)如图,连接AF,CE,
∵四边形ABCD是平行四边形
∴AD∥BC
∴∠AEO=∠CFO
又∵点O为AC的中点
∴OA=OC
在△AOE和△COF中,
∵∠AEO=∠CFO,∠AOE=∠COF,OA=OC
∴△AOE≌△COF(AAS)
∴AE=CF
又∵AE∥CF
∴四边形AECF是平行四边形
(2)当EF⊥AC时,四边形 AECF 是菱形,理由如下:
∵四边形AECF是平行四边形,EF⊥AC
∴四边形 AECF 是菱形
本题考查了平行四边形的判定与性质,菱形的判定,熟练掌握平行四边形的判定定理与菱形的判定定理是解题的关键.
26、购进甲型号书柜1个,购进乙型号书柜2个.
【解析】
设购进甲型号书柜x个,则购进乙型号书柜2x个,根据单价=总价÷数量结合乙型号书柜比甲型号书柜单价便宜了300元,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设购进甲型号书柜x个,则购进乙型号书柜2x个,根据题意得:
300
解得:x=1.
经检验,x=1是原方程的解,∴2x=2.
答:购进甲型号书柜1个,购进乙型号书柜2个.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
尺码/cm
22
22.5
23
23.5
24
24.5
25
销售量/双
4
6
6
10
2
1
1
分组
划记
频数
2.0<x≤3.5
正正一
11
3.5<x≤5.0
19
5.0<x≤6.5
13
6.5<x≤8.0
正
5
8.0<x≤9.5
2
合计
50
江苏省江阴市澄要片2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份江苏省江阴市澄要片2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省江阴市澄东片2025届数学九年级第一学期开学考试试题【含答案】: 这是一份江苏省江阴市澄东片2025届数学九年级第一学期开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省江阴市华士片、澄东片数学九上开学质量检测模拟试题【含答案】: 这是一份2024年江苏省江阴市华士片、澄东片数学九上开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。