|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省江阴市澄东片2025届数学九年级第一学期开学考试试题【含答案】
    立即下载
    加入资料篮
    江苏省江阴市澄东片2025届数学九年级第一学期开学考试试题【含答案】01
    江苏省江阴市澄东片2025届数学九年级第一学期开学考试试题【含答案】02
    江苏省江阴市澄东片2025届数学九年级第一学期开学考试试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省江阴市澄东片2025届数学九年级第一学期开学考试试题【含答案】

    展开
    这是一份江苏省江阴市澄东片2025届数学九年级第一学期开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)多项式4x2﹣4与多项式x2﹣2x+1的公因式是( )
    A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2
    2、(4分)矩形 与矩形 如图放置,点 共线,点共线,连接 ,取的中点 ,连接 .若 ,则的长为
    A.B.C.D.
    3、(4分)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2s,方差如下表:
    则这四人中发挥最稳定的是( )
    A.甲B.乙C.丙D.丁
    4、(4分)如图,四边形ABCD是菱形,AC=8,AD=5,DH⊥AB于点H,则DH的长为( )
    A.24B.10C.4.8D.6
    5、(4分)如图,在△ABC中,∠A=90°,点D在AC边上,DE//BC,若∠1=155°,则∠B的度数为( )
    A.55°B.65°C.45°D.75°
    6、(4分)如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为( )
    A.12+2B.13C.2+6D.26
    7、(4分)若点P(-1,3)在过原点的一条直线上,则这条直线所对应的函数解析式为( )
    A.y=-3xB.y=x
    C.y=3x-1D.y=1-3x
    8、(4分)如图,中俄“海上联合—2017”军事演习在海上编队演习中,两艘航母护卫舰从同一港口O同时出发,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时速度航行,离开港口1.5小时后它们分别到达A,B两点,相距30海里,则二号舰航行的方向是( )

    A.南偏东30°B.北偏东30°C.南偏东 60°D.南偏西 60°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)不等式的解集是____________________.
    10、(4分)如图是由6个形状大小完全相同菱形组成的网格,若菱形的边长为1,一个内角(∠O)为60°,△ABC的各顶点都在格点上,则BC边上的高为______.
    11、(4分)若关于x的分式方程无解,则m的值为__________.
    12、(4分)方程的解是_______.
    13、(4分)计算:(1)=______;(2)=______;(3) =______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知抛物线与轴交于两点,与轴交于点.
    (1)求的取值范围;
    (2)若,直线经过点,与轴交于点,且,求抛物线的解析式;
    (3)若点在点左边,在第一象限内,(2)中所得到抛物线上是否存在一点,使直线分的面积为两部分?若存在,求出点的坐标;若不存在,请说明理由.
    15、(8分)已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=3;当x=时,y=1.求x=-时,y的值.
    16、(8分)解方程:=+1.
    17、(10分)先化简,再求值:(1﹣)÷.其中a从0,1,2,﹣1中选取.
    18、(10分)(1)解方程:x2+3x-4=0 (2) 计算:
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_______.
    20、(4分)如图,在口ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若∠BAE=40°,∠CEF=15°,则∠D的大小为_____度.
    21、(4分)已知:关于的方程有一个根是2,则________,另一个根是________.
    22、(4分)在三角形中,点分别是的中点,于点,若,则________.
    23、(4分)化成最简二次根式后与最简二次根式的被开方数相同,则a的值为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知A,B(-1,2)是一次函数与反比例函数
    ()图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
    (1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
    (2)求一次函数解析式及m的值;
    (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
    25、(10分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.
    (1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?
    (2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.
    26、(12分)人教版八年级下册第19章《一次函数》中“思考”:这两个函数的图象形状都是直线,并且倾斜程度相同,函数的图象经过原点,函数的图象经与y轴交于点(0,5),即它可以看作直线向上平移5个单位长度而得到。比较一次函数解析式与正比例函数解析式,容易得出:一次函数的图象可由直线通过向上(或向下)平移个单位得到(当b>0时,向上平移,当b<0时,向下平移)。
    (结论应用)一次函数的图象可以看作正比例函数 的图象向 平移 个单位长度得到;
    (类比思考)如果将直线的图象向右平移5个单位长度,那么得到的直线的函数解析式是怎样的呢?我们可以这样思考:在直线上任意取两点A(0,0)和B(1,),将点A(0,0)和B(1,)向右平移5个单位得到点C(5,0)和D(6,),连接CD,则直线CD就是直线AB向右平移5个单位长度后得到的直线,设直线CD的解析式为:,将C(5,0)和D(6,)代入得到:解得,所以直线CD的解析式为:;①将直线向左平移5个单位长度,则平移后得到的直线解析式为 .②若先将直线向左平移4个单位长度后,再向上平移5个单位长度,得到直线,则直线的解析式为: .
    (拓展应用)已知直线:与直线关于x轴对称,求直线的解析式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】试题分析:分别将多项式 与多项式 进行因式分解,再寻找他们的公因式.
    本题解析:多项式: ,多项式: ,
    则两多项式的公因式为x-1.故选A.
    2、A
    【解析】
    延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.
    【详解】
    解:如图,延长GH交AD于点P,
    ∵四边形ABCD和四边形CEFG都是矩形,
    ∴∠ADC=∠ADG=∠CGF=90°,AD=BC=3、GF=CE=1,
    ∴AD∥GF,
    ∴∠GFH=∠PAH,
    又∵H是AF的中点,
    ∴AH=FH,
    在△APH和△FGH中,

    ∴△APH≌△FGH(ASA),
    ∴AP=GF=1,GH=PH=PG,
    ∴PD=AD-AP=3-1=2,
    ∵CG=EF=3、CD=1,
    ∴DG=2,△DGP是等腰直角三角形,
    则GH=PG= ×
    故选:A.
    本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
    3、B
    【解析】
    分析:根据方差的意义解答.
    详解:从方差看,乙的方差最小,发挥最稳定.
    故选B.
    点睛:考查方差的意义,方差越小,成绩越稳定.
    4、C
    【解析】
    运用勾股定理可求DB的长,再用面积法可求DH的长.
    【详解】
    解:∵四边形ABCD是菱形,AC=8,
    ∴AC⊥DB,OA=4,
    ∵AD=5,
    ∴运用勾股定理可求OD=3,
    ∴BD=1.
    ∵×1×8=5DH,
    ∴DH=4.8.
    故选C.
    本题运用了菱形的性质和勾股定理的知识点,运用了面积法是解决本题的关键.
    5、B
    【解析】
    先根据补角的定义求出∠CDE的度数,再由平行线的性质求出∠C的度数,根据余角的定义即可得出结论.
    【详解】
    解:∵∠1=155°,
    ∴∠CDE=180°-155°=25°.
    ∵DE∥BC,
    ∴∠C=∠CDE=25°.
    ∵∠A=90°,
    ∴∠B=90°-25°=65°.
    故选:B.
    本题考查的是平行线的性质,以及余角的性质,解题的关键是掌握两直线平行,内错角相等.
    6、B
    【解析】
    利用平移的性质得到B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,然后根据S阴影部分=S梯形BB′C′E进行计算.
    【详解】
    解:∵四边形ABCD沿AB方向平移得到四边形A'B'C'D',
    ∴B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,
    ∴C′D′⊥BE,
    ∴S阴影部分=S梯形BB′C′E=(8﹣3+8)×2=1.
    故选:B.
    本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
    7、A
    【解析】
    设这条过原点的直线的解析式为:y=kx,
    ∵该直线过点P(-1,3),
    ∴-k=3,即k=-3,
    ∴这条直线的解析式为:y=-3x.
    故选A.
    8、C
    【解析】
    【分析】由题意可知OA=18,OB=24,AB=30,由勾股定理逆定理可知∠AOB=90°,结合方位角即可确定出二号舰的航行方向.
    【详解】如图,由题意得:OA=12×1.5=18,OB=16×1.5=24,
    ∵AB=30,
    ∴OA2+OB2=182+242=900=302=AB2,
    ∴∠AOB=90°,
    ∵∠AOC=30°,
    ∴∠BOC=∠AOB-∠AOC=60°,
    ∴二号舰航行的方向是南偏东 60°,
    故选C.
    【点睛】本题考查了方位角、勾股定理逆定理,熟练掌握勾股定理逆定理是解本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    分析:首先进行去分母,然后进行去括号、移项、合并同类项,从而求出不等式的解.
    详解:两边同乘以1得:x-6>4(1-x), 去括号得:x-6>4-4x,
    移项合并同类项得:5x>10, 解得:x>1.
    点睛:本题主要考查的是解不等式,属于基础题型.理解不等式的性质是解决这个问题的关键.
    10、
    【解析】
    如图,连接EA、EC,先证明∠AEC=90°,E、C、B共线,求出AE即可.
    【详解】
    解:如图,连接EA,EC,
    ∵菱形的边长为1,由题意得∠AEF=30°,∠BEF=60°,AE=,
    ∴∠AEC=90°,
    ∵∠ACE=∠ACG=∠BCG=60°,
    ∴∠ECB=180°,
    ∴E、C、B共线,
    ∴AE即为△ACB的BC边上的高,
    ∴AE=,
    故答案为.
    本题考查菱形的性质,特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.
    11、
    【解析】
    由分式方程无解得到x=5,将其代入化简后的整式方程即可求出答案.
    【详解】
    将方程去分母得到:x-2(x-5)=-m,即10-x=-m,
    ∵分式方程无解,
    ∴x=5,
    将x=5代入10-x=-m中,解得m=-5,
    故答案为:-5.
    此题考查分式方程无解的情况,正确理解分式方程无解的性质得到整式方程的解是解题的关键.
    12、
    【解析】
    观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】
    解:两边同时乘以得,

    解得,,
    检验:当时,,不是原分式方程的解;
    当时,,是原分式方程的解.
    故答案为:.
    本题考查了解分式方程:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
    13、
    【解析】
    根据二次根式的乘法公式:和除法公式计算即可.
    【详解】
    解:(1);
    (2);
    (3).
    故答案为:;;.
    此题考查的是二次根式的化简,掌握二次根式的乘法公式:和除法公式是解决此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)m≠-1;(1)y=-x1+5x-6;(3)点P(,-)或(1,0).
    【解析】
    (1)由于抛物线与x轴有两个不同的交点,可令y=0,则所得方程的根的判别式△>0,可据此求出m的取值范围.
    (1)根据已知直线的解析式,可得到D点的坐标;根据抛物线的解析式,可用m表示出A、B的坐标,即可得到AD、BD的长,代入AD×BD=5,即可求得m的值,从而确定抛物线的解析式.
    (3)直线PA分△ACD的面积为1:4两部分,即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),即可求解.
    【详解】
    解:(1)∵抛物线与x轴有两个不同的交点,
    ∴△=(m-4)1+11(m-1)=m1+4m+4=(m+1)1>0,
    ∴m≠-1.
    (1)∵y=-x1-(m-4)x+3(m-1)=-(x-3)(x+m-1),
    ∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
    则:D(0,-1),
    则有:AD×BD=,
    解得:m=1(舍去)或-1,
    ∴m=-1,
    抛物线的表达式为:y=-x1+5x-6①;
    (3)存在,理由:
    如图所示,点C(0,-6),点D(0,-1),点A(1,0),
    直线PA分△ACD的面积为1:4两部分,
    即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),
    将点H、A的坐标代入一次函数表达式并解得:
    直线HA的表达式为:y=x-1或y=x-5②,
    联立①②并解得:x=或1,
    故点P(,-)或(1,0).
    本题考查的是二次函数综合运用,涉及到一次函数、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.
    15、y=-1
    【解析】
    设,,则,利用待定系数法求出的值,可得,再把代入求解即可.
    【详解】
    解:设,,则.
    把,,,分别代入上式得.
    解得,.
    ∴.
    ∴当,.
    本题考查了正比例函数和反比例函数的问题,掌握正比例函数和反比例函数的性质、待定系数法是解题的关键.
    16、.
    【解析】
    分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    详解:,
    ,
    .
    经检验:是原方程的解,
    所以原方程的解是.
    点睛:此题考查了解分式方程,熟练掌握运算法则是解本题的关键.
    17、,
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=﹣1代入计算即可求出值.
    【详解】
    原式,
    当a=﹣1时,原式=.
    此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    18、(1) (2)
    【解析】
    (1)解一元二次方程,将等式左边因式分解,转化成两个一元一次方程,求解即可. (2) 首先把特殊角的三角函数值代入,然后进行二次根式的运算即可.
    【详解】
    解:(1)原方程变形得(x-1)(x+4)=0
    解得x1=1,x2=-4
    经验:x1=1,x2=-4是原方程的解.
    (2)原式=×××=
    本题是计算题第(1)考查解二元一次方程-因式分解.(2)特殊三角函数的值.本题较基础,熟练掌握运算的方法即可求解.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、50
    【解析】
    根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.
    【详解】
    解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
    S阴影=S△AHC+S△BFC+S△AEB=

    =50
    故答案为:50.
    本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
    20、1
    【解析】
    想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.
    【详解】
    解:∵四边形AEFG是正方形,
    ∴∠AEF=90°,
    ∵∠CEF=15°,
    ∴∠AEB=180°-90°-15°=75°,
    ∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠B=1°
    故答案为:1.
    本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
    21、2, 1.
    【解析】
    设方程x2-3x+a=0的另外一个根为x,根据根与系数的关系,即可解答.
    【详解】
    解:设方程的另外一个根为,
    则,,
    解得:,,
    故答案为:2,1.
    本题主要考查了根与系数的关系及一元二次方程的解,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q.
    22、80°
    【解析】
    先由中位线定理推出,再由平行线的性质推出,然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF,最后由三角形内角和定理求出.
    【详解】
    ∵点分别是的中点
    ∴(中位线的性质)
    又∵
    ∴(两直线平行,内错角相等)

    ∴(两直线平行,同位角相等)
    又∵
    ∴三角形是三角形
    ∵是斜边上的中线

    ∴(等边对等角)

    本题考查了中位线定理,平行线的性质,直角三角形斜边上的中线等于斜边的一半,和三角形内角和定理.熟记性质并准确识图是解题的关键.
    23、1.
    【解析】
    先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.
    【详解】
    ∵与最简二次根式是同类二次根式,且=1,
    ∴a+1=3,解得:a=1.
    故答案为1.
    本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
    二、解答题(本大题共3个小题,共30分)
    24、(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;
    (2)一次函数的解析式为y=x+;m=﹣2;
    (3)P点坐标是(﹣,).
    【解析】
    试题分析:(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;
    (2)根据待定系数法,可得函数解析式以及m的值;
    (3)设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面积相等得,可得答案.
    试题解析:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x<﹣1,
    所以当﹣4<x<﹣1时,一次函数大于反比例函数的值;
    (2)设一次函数的解析式为y=kx+b,
    y=kx+b的图象过点(﹣4,),(﹣1,2),则

    解得
    一次函数的解析式为y=x+,
    反比例函数y=图象过点(﹣1,2),
    m=﹣1×2=﹣2;
    (3)连接PC、PD,如图,设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面积相等得
    ××(x+4)=×|﹣1|×(2﹣x﹣),
    x=﹣,y=x+=,
    ∴P点坐标是(﹣,).
    考点:反比例函数与一次函数的交点问题
    25、解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,
    根据题意得:,解得:.
    答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆.
    (2)设载重量为8吨的卡车增加了z辆,
    依题意得:8(5+z)+10(7+6﹣z)>165,解得:z<.
    ∵z≥0且为整数,∴z=0,1,2,6﹣z=6,5,1.
    ∴车队共有3种购车方案:
    ①载重量为8吨的卡车不购买,10吨的卡车购买6辆;
    ②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;
    ③载重量为8吨的卡车购买2辆,10吨的卡车购买1辆.
    【解析】
    试题分析:(1)根据“车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;
    (2)利用“车队需要一次运输沙石165吨以上”得出不等式,求出购买方案即可.
    试题解析:(1)设该车队载重量为8吨、10吨的卡车分别有x辆、y辆,
    根据题意得:,
    解之得:.
    答:该车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;
    (2)设载重量为8吨的卡车增加了z辆,
    依题意得:8(5+z)+10(7+6−z)>165,
    解之得:,
    ∵且为整数,
    ∴z=0,1,2;
    ∴6−z=6,5,1.
    ∴车队共有3种购车方案:
    ①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;
    ②载重量为8吨的卡车购买2辆,10吨的卡车购买1辆;
    ③载重量为8吨的卡车不购买,10吨的卡车购买6辆
    26、【结论应用】y=x,下,1;
    【类比思考】①y=-6x-10;②y=-6x-3;
    【拓展应用】y=-2x-1.
    【解析】
    【结论应用】
    根据题目材料中给出的结论即可求解;
    【类比思考】
    ①在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移5个单位得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
    ②在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移4个单位长度,再向上平移5个单位长度得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
    【拓展应用】
    在直线:y=2x+1上任意取两点A(0,1)和B(1,5),作点A和B关于x轴的对称点C、D,根据关于x轴对称的点的规律得到C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式.
    【详解】
    解:【结论应用】一次函数y=x-1的图象可以看作正比例函数y=x的图象向下平移1个单位长度而得到.
    故答案为y=x,下,1;
    【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),
    将点A(0,0)和B(1,-6)向左平移5个单位得到点C(-5,0)和D(-4,-6),连接CD,则直线CD就是直线AB向左平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+b(k≠0),
    将C(-5,0)和D(-4,-6)代入得到:

    解得

    所以直线CD的解析式为:y=-6x-10.
    故答案为y=-6x-10;
    ②在直线y=-6x上任意取两点A(0,0)和B(1,-6),
    将点A(0,0)和B(1,-6)向左平移4个单位长度,再向上平移5个单位长度得到点C(-4,5)和D(-1,-1),连接CD,则直线CD就是直线AB向左平移4个单位长度,再向上平移5个单位长度后得到的直线,
    设直线CD的解析式为:y=kx+b(k≠0),
    将C(-4,5)和D(-1,-1)代入得到:
    解得
    所以直线的解析式为:y=-6x-3.
    故答案为y=-6x-3;
    【拓展应用】在直线:y=2x+1上任意取两点A(0,1)和B(1,5),
    则点A和B关于x轴的对称点分别为C(0,-1)或D(1,-5),连接CD,则直线CD就是直线AB关于x轴对称的直线,
    设直线CD的解析式为:y=kx+b(k≠0),
    将C(0,-1)或D(1,-5)代入得到:
    解得
    所以直线关于x轴对称的直线的解析式为y=-2x-1.
    本题考查了一次函数图象与几何变换,一次函数与二元一次方程(组),考查了学生的阅读理解能力与知识的迁移能力.理解阅读材料是解题的关键.
    题号





    总分
    得分
    选手




    方差(s2)
    0.020
    0.019
    0.021
    0.022
    相关试卷

    江苏省江阴市澄要片2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份江苏省江阴市澄要片2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省江阴市华士片、澄东片数学九上开学质量检测模拟试题【含答案】: 这是一份2024年江苏省江阴市华士片、澄东片数学九上开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省江阴市澄东片数学九上开学调研模拟试题【含答案】: 这是一份2024年江苏省江阴市澄东片数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map