![江苏省无锡市滨湖区2024-2025学年九年级数学第一学期开学达标测试试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16284944/0-1729726075556/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省无锡市滨湖区2024-2025学年九年级数学第一学期开学达标测试试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16284944/0-1729726075594/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省无锡市滨湖区2024-2025学年九年级数学第一学期开学达标测试试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16284944/0-1729726075618/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省无锡市滨湖区2024-2025学年九年级数学第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)小明用作图象的方法解二元一次方程组时,他作出了相应的两个一次函数的图象,则他解的这个方程组是( )
A.B.C.D.
2、(4分)若m=-4,则( )
A.1.5<m<2B.2<m<2.5C.2.5<m<3D.3<m<3.5
3、(4分)函数中自变量x的取值范围是( )
A.≥-3B.≥-3且C.D.且
4、(4分)如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动.在运动过程中,点B到原点的最大距离是( )
A.6B.2C.2D.2+2
5、(4分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为( )
A.B.C.D.
6、(4分)下列命题:①任何数的平方根有两个;②如果一个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数.错误的个数为( )
A.1 B.2 C.3 D.4
7、(4分)如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为( )
A.2B.3C.4D.2
8、(4分)如图,在矩形ABCD中,AB=2,∠AOD=120°,则对角线AC等于( )
A.3B.4C.5D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.
10、(4分)如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.
11、(4分)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为_____.
12、(4分)如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为 .
13、(4分)如图,矩形ABCD的对角线AC与BD相交于点O,,.若,,则四边形OCED的面积为___.
三、解答题(本大题共5个小题,共48分)
14、(12分)在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.
(Ⅰ)如图①,求证四边形AECF是平行四边形;
(Ⅱ)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长.
15、(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.
(1)求P点的坐标.
(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.
(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.
16、(8分)如图,△ABC中,A(-1,1),B(-4,2),C(-3,4).
(1)在网格中画出△ABC向右平移5个单位后的图形△A1B1C1;
(2)在网格中画出△ABC关于原点O成中心对称后的图形△A2B2C2;
(3)请直接写出点B2、C2的坐标.
17、(10分)已知一次函数y=kx+1经过点(1,2),O为坐标轴原点.
(1)求k的值.
(2)点P是x轴上一点,且满足∠APO=45°,直接写出P点坐标.
18、(10分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将长8cm,宽4cm的矩形ABCD纸片折叠,使点A与C重合,则折痕EF的长为_________cm.
20、(4分)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为_____.
21、(4分)如图,,请你再添加一个条件______,使得(填一个即可).
22、(4分)请你写出一个有一根为0的一元二次方程:______.
23、(4分)如图,已知的平分线与的垂直平分线相交于点,,,垂足分别为,,,,则的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,
求证:四边形OCED是菱形.
25、(10分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.
(1)求证:四边形EGFH是平行四边形;
(2)当EG=EH时,连接AF
①求证:AF=FC;
②若DC=8,AD=4,求AE的长.
26、(12分)(1)分解因式: x(a-b)+y(a-b)
(2)解分式方程:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据直线所在的象限,确定k,b的符号.
【详解】
由图象可知,两条直线的一次项系数都是负数,且一条直线与y轴的交点在y轴的正半轴上,b为正数,另一条直线的与y轴的交点在y轴的负半轴上,b为负数,符合条件的方程组只有D.
故选D.
一次函数y=kx+b的图象所在象限与常数k,b的关系是:①当k>0,b>0时,函数y=kx+b的图象经过第一,二,三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一,三,四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一,二,四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二,三,四象限,反之也成立.
2、B
【解析】
通过62<37<72,6.52=42.25,判断出的范围即可
【详解】
∵62<37<72,6.52=42.25,
∴6<<6.5,则2<-4<2.5,故2<m<2.5,故选B
熟练掌握二次根式的估算是解决本题的关键,难度一般
3、B
【解析】
分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.
解答:解:∵≥0,
∴x+3≥0,
∴x≥-3,
∵x-1≠0,
∴x≠1,
∴自变量x的取值范围是:x≥-3且x≠1.
故选B.
4、D
【解析】
试题分析:作AC的中点D,连接OD、DB,
∵OB≤OD+BD,
∴当O、D、B三点共线时OB取得最大值,
∵D是AC中点,
∴OD=AC=2,
∵BD=,OD=AC=2,
∴点B到原点O的最大距离为2+2,
故选D.
考点:1.二次函数的应用;2.两点间的距离;3.勾股定理的应用.
5、A
【解析】
分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.
详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.
∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).
∵P1与P2关于原点对称,∴P2(2.8,3.6).
故选A.
点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
6、D
【解析】【分析】根据立方根和平方根的知识点进行解答,正数的平方根有两个,1的平方根只有一个,任何实数都有立方根,则非负数才有平方根,一个数的立方根与原数的性质符号相同,据此进行答题.
【详解】①1的平方根只有一个,故任何数的平方根都有两个结论错误;
②负数有立方根,但是没有平方根,故如果一个数有立方根,那么它一定有平方根结论错误;
③算术平方根还可能是1,故算术平方根一定是正数结论错误;
④非负数的立方根一定是非负数,故非负数的立方根不一定是非负数,
错误的结论①②③④,
故选D.
【点睛】本题主要考查立方根、平方根和算术平方根的知识点,注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,1的立方根式1.
7、A
【解析】
先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.
【详解】
解:∵∠C=90°,∠A=30°,
∴BC=AB=4,
又∵DE是中位线,
∴DE=BC=1.
故选:A.
本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.
8、B
【解析】
已知矩形ABCD,,所以在直角三角形ABD中,,则得,根据矩形的性质,.
【详解】
已知矩形ABCD,
,
,
在直角三角形ABD中,
(直角三角形中角所对的直角边等于斜边的一半),
矩形的对角线相等,
.
所以D选项是正确的.
此题考查的知识点是矩形的性质和角的直角三角形问题,解题的关键是由已知得角的直角三角形及矩形性质求出AC.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=x+1.
【解析】
直接利用原高度+上升的时间×1=海拔高度,进而得出答案.
【详解】
气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为:y=x+1.
故答案为:y=x+1.
此题主要考查了函数关系式,正确表示出上升的高度是解题关键.
10、50°或90°
【解析】
分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.
详解:当AP⊥ON时,∠APO=90°,则∠A=50°,
当PA⊥OA时,∠A=90°,
即当△AOP为直角三角形时,∠A=50或90°.
故答案为50°或90°.
点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.
11、1
【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.
【详解】
在Rt△ABC中,∠A=30°,BC=1,
∴AB=2BC=2,
∵点D,E分别是直角边BC,AC的中点,
∴DE=AB=1,
故答案为:1.
本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
12、x>﹣1.
【解析】
试题分析:根据一次函数的图像可知y随x增大而增大,因此可知不等式的解集为x>-1.
考点:一次函数与一元一次不等式
13、
【解析】
连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到OCED为平行四边形,根据邻边相等的平行四边形为菱形得到四边形OCED为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.
【详解】
解:连接OE,与DC交于点F,
∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,
∵OD∥CE,OC∥DE,
∴四边形ODEC为平行四边形,
∵OD=OC,
∴四边形OCED为菱形,
∴DF=CF,OF=EF,DC⊥OE,
∵DE∥OA,且DE=OA,
∴四边形ADEO为平行四边形,
∵AD=,AB=2,
∴OE=,CD=2,
则S菱形OCED=OE•DC=××2=.
故答案为:.
本题考查矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)1.
【解析】
(I)根据平行四边形的性质得出AD∥BC,根据平行四边形的判定推出即可;
(II)根据菱形的性质求出AE=1,AE=EC,求出AE=BE即可.
【详解】
(I)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∵AF=CE,
∴四边形AECF是平行四边形;
(II)如图:
∵四边形AECF是菱形,
∴AE=EC,
∴∠1=∠2,
∵∠BAC=90°,
∴∠2+∠3=90°∠1+∠B=90°,
∴∠3=∠B,
∴AE=BE,
∵AE=1,
∴BE=1.
本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.
15、(1)P(﹣3,1);(2)Q(1,0)或(5,0);(3)0<m<1.
【解析】
(1)根据两直线相交的性质进行作答.(2)根据三角形面积计算方式进行作答.(3)先做出直线经过O点、B点的讨论,再结合题意进行作答.
【详解】
(1)∵A(0,3)、点B(3,0),
∴直线AB的解析式为y=﹣x+3,
由,
解得,
∴P(﹣3,1).
(2)设Q(m,0),
由题意: •|m﹣3|•1=1,
解得m=5或1,
∴Q(1,0)或(5,0).
(3)当直线y=﹣2x+m经过点O时,m=0,
当直线y=﹣2x+m经过点B时,m=1,
∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<1.
本题考查了两直线相交的相关性质和三角形面积计算方式及与直线的综合运用,熟练掌握两直线相交的相关性质和三角形面积计算方式及与直线的综合运用是本题解题关键.
16、(1)见解析 (2)见解析 (3)B2(4,-2)、C2(3,-4)
【解析】
(1)首先将A、B、C点的坐标向右平移5单位,在将其连接即可.
(2)首先将A、B、C点的坐标关于原点的对称点,在将其连接即可.
(3)观察直角坐标写出坐标.
【详解】
(1)首先将A、B、C点的坐标向右平移5单位,并将其连接如图所示.
(2)首先将A、B、C点的坐标关于原点的对称点,在将其连接如图所示.
(3)根据直角坐标系可得B2(4,-2)、C2(3,-4)
本题主要考查直角坐标系的综合题,应当熟练掌握.
17、(1)1(2)P(3,0)或P(−1,0).
【解析】
(1)直接把点A(1,2)代入一次函数y=kx+1,求出k的值即可;
(2)求出直线y=x+1与x轴的交点,进而可得出结论.
【详解】
(1)∵一次函数y=kx+1经过A(1,2),
∴2=k+1,
∴k=1;
(2)如图所示,
∵k=1,
∴一次函数的解析式为y=x+1,
∴B(0,1),C(−1,0),
∴∠ACO=45°,
∴P (−1,0);
∴P关于直线x=1与P对称,
∴P (3,0).
∴P(3,0)或P(−1,0).
此题考查一次函数图象上点的坐标特征,解题关键在于作辅助线
18、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.
【解析】
(1)认真分析图象得到路程与速度数据;
(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
(3)两人相遇实际上是函数图象求交点.
【详解】
解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象
则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s
(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,
∴他离家的路程y=4000﹣300x,
自变量x的范围为0≤x≤,
(3)由图象可知,两人相遇是在小玲改变速度之前,
∴4000﹣300x=200x
解得x=8
∴两人相遇时间为第8分钟.
故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.
本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
过点F作AB的垂线,垂足为H,设DF=X,则,C=4,FC=,
,即DF=3,在直角三角形FHE中,
20、3.
【解析】
试题分析:由平行四边形ABCD的对角线相交于点O,OE⊥BD,根据线段垂直平分线的性质,可得BE=DE,又由平行四边形ABCD的周长为30,可得BC+CD的长,继而可得△CDE的周长等于BC+CD.
试题解析:∵四边形ABCD是平行四边形,
∴OB=OD,AB=CD,AD=BC,
∵平行四边形ABCD的周长为30,
∴BC+CD=3,
∵OE⊥BD,
∴BE=DE,
∴△CDE的周长为:CD+CE+DE=CD+CE+BE=CD+BC=3.
考点:3.平行四边形的性质;3.线段垂直平分线的性质.
21、(答案不唯一)
【解析】
注意两个三角形有一个公共角∠A,再按照三角形全等的判定方法结合图形添加即可.
【详解】
解:∵∠ A=∠ A, AB=AC,
∴若按照SAS可添加条件AD=AE;
若按照AAS可添加条件∠ ADB=∠AEC;
若按照ASA可添加条件∠B=∠C;
故答案为AD=AE或∠ADB=∠AEC或∠B=∠C.
本题考查了全等三角形的判定方法,熟练掌握判定三角形全等的各种方法是解决此类问题的关键.
22、
【解析】
根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.
【详解】
可以是,=0等.
故答案为:
本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.
23、
【解析】
连接DC、DB,根据中垂线的性质即可得到DB=DC,根据角平分线的性质即可得到DE=DF,从而即可证出△DEB≌DFC,从而得到BE=CF,再证△AED≌△AFD,即可得到AE=AF,最后根据,即可求出BE.
【详解】
解:如图所示,连接DC、DB,
∵DG垂直平分BC
∴DB=DC
∵AD平分,,
∴DE=DF,∠DEB=∠DFC=90°
在Rt△DEB和Rt△DFC中,
∴Rt△DEB≌Rt△DFC
∴BE=CF
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD
∴AE=AF
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE
∵,
∴BE=(AB-AC)=1.5.
故答案为:1.5.
此题考查的是垂直平分线的性质、角平分线的性质和全等三角形的判定,掌握垂直平分线上的点到线段两个端点的距离相等、角平分线上的点到角两边的距离相等和用HL证全等三角形是解决此题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.
【详解】
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,∴OC=OD=AC=BD
∴四边形OCED是菱形.
25、(1)见解析;(2)①见解析,②1.
【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)①由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF;
②设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
【详解】
(1)∵矩形ABCD中,AB∥CD,
∴∠FCH=∠EAG,
又∵CD=AB,BE=DF,
∴CF=AE,
又∵CH=AG,∠FCH=∠EAG
∴△AEG≌△CFH(SAS),
∴GE=FH,∠CHF=∠AGE,
∴∠FHG=∠EGH,
∴FH∥GE,
∴四边形EGFH是平行四边形;
(2)①如图,连接AF,
∵EG=EH,四边形EGFH是平行四边形,
∴四边形GFHE为菱形,
∴EF垂直平分GH,
又∵AG=CH,
∴EF垂直平分AC,
∴AF=CF;
②设AE=x,则FC=AF=x,DF=8-x,
在Rt△ADF中,AD2+DF2=AF2,
∴42+(8-x)2=x2,
解得x=1,
∴AE=1.
本题考查了矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键
26、(1)(a-b)(x+y);(2)
【解析】
(1)提出公因式(a-b)即可;
(2)根据分式方程的解法,去分母,即可解出.
【详解】
(1)分解因式:
解:原式=
(2)解分式方程:
解:去分母得,
解这个方程,得
经检验:是原方程的解.
本题考查了因式分解及分式方程的解法,解题的关键是掌握提公因式法及分式方程的解法.
题号
一
二
三
四
五
总分
得分
江苏省南通中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】: 这是一份江苏省南通中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省镇江市外国语数学九年级第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省镇江市外国语数学九年级第一学期开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省盐城市第一初级中学数学九年级第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省盐城市第一初级中学数学九年级第一学期开学达标测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。